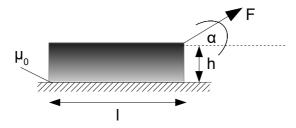


Webinar: Statik

Thema: Reibung und Haftung


Aufgabe 1) Reibung und Haftung

Gegeben sei die obige gewichtslose Stange der Länge l=4m, welche verschiebbar zwischen zwei rauhen Führungen A und B mit dem Abstand b=2m liegt. Der Haftungskoeffizient zwischen Stange und Führungen sei $\mu_0=0,5$. Am Ende der Stange ist ein Klotz mit dem Gewicht G=100~N befestigt.

Bestimme den Winkel α unter welchem das gesamte System geneigt werden kann, ohne dass die Stange herausrutscht!

Aufgabe 2) Reibung und Haftung

Gegeben sei der obige Klotz auf einer rauen Oberfläche. Dieser soll durch die Kraft F verschoben werden. Gegeben seien:

$$G = 150 \text{ N}, 1 = 60 \text{cm}, \ \mu_0 = 0.5, h = 30 \text{cm}$$

- a) Wie groß ist die erforderliche Verschiebekraft sowie die resultierende Bodenkraft, wenn $\alpha = 40^{\circ}$?
- b) In welcher Entfernung von der unteren rechten Ecke greift die resultierende Bodenkraft an?
- c) Unter welchem Winkel α_0 wird die Verschiebekraft $\overline{F_0}$ minimal und wie groß ist sie?

Verwendete Formeln:

Gleichgewichtsbedingungen

$$\sum F_{ix} = 0$$
 in x-Richtung

$$\sum F_{iy} = 0$$
 in y-Richtung

$$\sum M_i^{(X)} = 0$$
 Momentengleichgewichtsbedingung

X = Bezugspunkt

Haftung und Reibung

$$H = \mu_0 \cdot N$$
 Haftung

 $\mu_0 = Haftungskoeffizient$