ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Elektrotechnik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Magnetisches Feld > Einführung Magnetisches Feld:

Ruheinduktion und Bewegungsinduktion

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Ruheinduktion

In der nachfolgenden Abbildung sehen Sie das Schema für eine Ruheinduktion:

Ruheinduktion bei offener Leiterschleife
Ruheinduktion bei offener Leiterschleife

In dieser Abbildung liegt eine offene Leiterschleife vor, die von einem Magnetfeld durchsetzt ist. Hierdurch wird der Leiterschleife eine Spannung induziert, die als Quellenspannung $ u_q $ an den Enden nachgewiesen werden kann. Schließt man diese Leiterschleife nun, wie es in der nächsten Abbildung der Fall ist. so tritt ein Induktionsstrom $ i_K $ in der Leiterschleife auf. 

Ruheinduktion bei geschlossener Leiterschleife
Ruheinduktion bei geschlossener Leiterschleife

Dieser Induktionsstrom $ i_K $ ist durch den Widerstand $ R_L $ des Leiters begrenzt. Dies lässt sich formal berücksichtigen durch:

$ i_K = \frac{u_{AB}}{R_L} $

Merke

Der Induktionsstrom steigt mit zunehmender Spannung $ u_{AB} $ und sinkt mit zunehmenden Leiterwiderstand $ R_L $. 

Um die induzierte Spannung bestimmen zu können, verwendet man folgende Ausgangsgleichung:

Merke

Induktionsgesetz $ u_q = \frac{d\Phi}{dt} $  

$ u_q $ = induzierte Spannung [analog Quellenspannung]

$ \Phi $ = Magnetfluss

Handelt es sich um einen Leiter, der Windungen $N$ aufweist, so muss das Induktionsgesetz entsprechend angepasst werden:

$ u_q = N \frac{d\Phi}{dt} $  

Bewegungsinduktion

Bei der Bewegungsinduktion wird ein beweglicher Leiter, durch ein homogenes Magnetfeld bewegt. Dabei wird im Leiter eine Spannung induziert. Eine schematische Darstellung hierfür sehen Sie in der nachfolgenden Abbildung.

Bewegungsinduktion
Bewegungsinduktion

Bestimmung der induzierten Spannung bei einer Bewegungsinduktion

Bevor wir mit der Bestimmung der induzierten Spannung $ u_q $ beginnen können, noch müssen kurz zwei Größen erläutert werden:

  • $ l_s $ ist der  Bereich des Leiters, der sich im Magnetfeld befindet.
  • $ dx $ ist der Weg, den der Leiter in der abgebildeten Bewegungsrichtung zurücklegt. 

Um die induzierte Spannung $ u_q $zu bestimmen, verwenden wir wieder folgende Ausgangsgleichung:

$ u_q = N \frac{d\Phi}{dt} $

Wenn man sich die Abbildung vor Augen hält, so sieht man, dass die Windung N = 1 ist und sich somit unsere Gleichung verkürzt zu:

$ u_q = N \frac{d\Phi}{dt}$

Für den Magnetischen Fluss $ d\Phi $ gilt:

$ d\Phi = B \cdot dA \rightarrow $ Magnetische Flussdichte $\cdot $ Teilfläche

Für die Teilfläche $ dA $ gilt:

$ dA = l_s \cdot dx \rightarrow $ Leiterbereiche $ \cdot $ Leiterweg 

Setz man die letzte Gleichung in die Gleichung des Magnetischen Flusses ein, so erhält man:

$\Longrightarrow  d \Phi = B \cdot l_s \cdot dx $

Setzt man diese Gleichung wiederum in die Gleichung für die induzierte Spannung ein, so erhält man:

$ u_q = B \cdot l_s \cdot \frac{dx}{dt} $

Mit der Kenntnis, dass $ \frac{dx}{dt} = \nu $ der Bewegungsgeschwindigkeit entspricht, ändert sich die Gleichung zu:

Merke

$ u_q = B \cdot l_s \cdot \nu $

Mit dieser Gleichung haben wir die induzierte Spannung eindeutig beschrieben. 

Aber hier ist noch nicht Schluss, denn auch die elektrische Feldstärke $ E $ lässt sich auch dieser Gleichung bestimmen. Denn der Quotient $ \frac{u_q}{l_s} $ wird ersetzt durch $ E $ und somit errechnet sich die elektrische Feldstärke E aus dem Produkt von magnetischer Flussdichte und der Bewegungsgeschwindigkeit des Leiters:

Merke

$\ E = B \cdot \nu $ 
Bild von Autor Jan Morthorst

Autor: Jan Morthorst

Dieses Dokument Ruheinduktion und Bewegungsinduktion ist Teil eines interaktiven Online-Kurses zum Thema Elektrotechnik.

Jan Morthorst verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses ElektrotechnikElektrotechnik
Dieser Inhalt ist Bestandteil des Online-Kurses

Elektrotechnik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einführung in die Elektrotechnik
    • Einleitung zu Einführung in die Elektrotechnik
  • Gleichstrom
    • Einführung Gleichstrom
    • Elektrische Größen
      • Einleitung zu Elektrische Größen
      • Elektrische Ladung
      • Elektrischer Strom
      • Technische Stromrichtung
      • Elektrisches Potential
        • Einleitung zu Elektrisches Potential
        • Bewegung einer positiven Ladung
        • Bewegung einer negativen Ladung
        • Ergänzende Informationen zum elektrischen Potential
      • Elektrische Spannung
      • Physikalische Größen
      • Elektrischer Stromkreis
      • Elektrischer Leitwert und Elektrischer Widerstand
    • Gleichstromkreise
      • Einleitung zu Gleichstromkreise
      • Schaltung von Widerständen
        • Einleitung zu Schaltung von Widerständen
        • Lineare Widerstände, Strom-Spannungs-Kennlinie
        • Nichtlineare Widerstände
        • Symmetrie der Strom-Spannungs-Kennlinie
        • Temperaturabhängigkeit von Widerständen
        • Reihenschaltung von Widerständen in Gleichstromkreisen
        • Parallelschaltung von Widerständen in Gleichstromkreisen
        • Vergleich von Parallelschaltung und Reihenschaltung
        • Kombination von Reihenschaltung und Parallelschaltung
      • Elektrische Quellen
        • Einleitung zu Elektrische Quellen
        • Spannungsquellen
        • Stromquellen
      • Kirchhoffsche Gesetze
        • Einleitung zu Kirchhoffsche Gesetze
        • Knoten, Zweig, Maschen
        • Knotensatz, 1. Kirchhoffsches Gesetz
        • Maschensatz, 2. Kirchhoffsches Gesetz
      • Brückenschaltung
        • Einleitung zu Brückenschaltung
        • Wheatstonesche Brückenschaltung
  • Elektrisches Feld
    • Einführung Elektrisches Feld
      • Einleitung zu Einführung Elektrisches Feld
      • Größen
      • Polarisation
      • Influenz
      • Kondensatoren 1
      • Kondensatoren 2
      • Schaltung von Kondensatoren
        • Parallelschaltung
        • Reihenschaltung
      • Energie eines magnetischen Feldes
  • Magnetisches Feld
    • Einführung Magnetisches Feld
      • Einleitung zu Einführung Magnetisches Feld
      • Vorgänge im magnetischen Feld
      • Unterschied Permanentmagnet und Elektromagnet
      • Fluss, Durchflutung, Spule
      • Feldstärke und Durchflutungsgesetz
      • Induktion und Lenz'sche Regel
      • Ruheinduktion und Bewegungsinduktion
      • Magnetische Hysterese
  • Wechselstrom
    • Einführung Wechselstrom
    • Wechselgrößen und Grundgesetze
      • Periodische Zeitfunktionen
        • Einleitung zu Periodische Zeitfunktionen
        • Ausgangsgrößen
        • Wechselgrößen
      • Sinusgrößen
        • Einleitung zu Sinusgrößen
        • Erzeugung von Sinusspannungen
        • Kennwerte
      • Belastungsarten im Wechselstromkreis
        • Einleitung zu Belastungsarten im Wechselstromkreis
        • Sinusströme und Sinusspannung
        • Blindwiderstände und Leitwert
        • Zeitdiagramme und Phasenverschiebungswinkel
      • Darstellung von Wechselgrößen im Zeigerbild
      • Leistung, Leistungsfaktor, Arbeit
    • Wechselstromkreise
      • Einleitung zu Wechselstromkreise
      • Kirchhoffsche Regeln bei Wechselstrom
      • Wechselstromschaltungen mit R, L und C
        • Einleitung zu Wechselstromschaltungen mit R, L und C
        • Beispiel: Reihenschaltung eines Widerstandes und einer Induktivität
        • Beispiel: Reihenschaltung eines Widerstandes und eines Kondensators
        • Beispiel: Parallelschaltung eines Widerstandes und einer Induktivität
        • Beispiel: Parallelschaltung eines Widerstandes und eines Kondensators
      • Schwingkreise
        • Einleitung zu Schwingkreise
        • Reihenschwingkreise
        • Parallelschwingkreise
      • Komplexe Berechnung von Wechselstromschaltungen
        • Einleitung zu Komplexe Berechnung von Wechselstromschaltungen
        • Komplexe Zahlen und Darstellungsformen
        • Komplexe Spannungen und Ströme
        • Komplexe Widerstände und Leitwerte
        • Zusammenfassung komplexer Berechnungen
  • Drehstrom
    • Einführung in die Drehstromtechnik
      • Einleitung zu Einführung in die Drehstromtechnik
      • Drehstromsystem
      • Strängeverkettung
      • Elektrische Größen der Sternschaltung
      • Elektrische Größen der Dreieckschaltung
      • Leistung, Leistungsfaktor, Arbeit
  • 84
  • 9
  • 149
  • 127
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 29.10.2016:
    "Ihr erklärt es super anschaulich und gebt auch noch Tipps für die Prüfung. Vielen Dank! Dank euren super Kursen kann ich ohne Probleme mehrere Stunden am Stück lernen"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 24.10.2016:
    "Echt super formuliert und die perfekte Unterstützung für mein Studium (Wirtschaftsingenieurwesen)! Danke dafür! :)"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 04.09.2016:
    "Bin positiv überrascht!"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 13.07.2016:
    "super"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 18.04.2016:
    "super"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 17.02.2016:
    "Sehr gut, besser als gedacht :)"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 31.12.2015:
    "Simple erklärt. Gutes Tempo..."

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 17.12.2015:
    "Super Organisiert "

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 20.11.2015:
    "Zufrieden "

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 21.03.2015:
    "Gut und verständlich erklärt."

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen