ZU DEN KURSEN!

Regelungstechnik - Frequenzgang aus Differenzialgleichung

Kursangebot | Regelungstechnik | Frequenzgang aus Differenzialgleichung

Regelungstechnik

Frequenzgang aus Differenzialgleichung

Nun erklären wir Ihnen, wie man den Frequenzgang aus einer Differenzialgleichung eines Übertragungselements bestimmt. Dabei stellen wir in den kommenden beiden Kurstexten zwei Fälle vor. 

  1. Frequenzgang einer Differenzialgleichung eines linearen Regelkreiselelements
  2. Frequenzgang einer Differentialgleichung bei Anregung mit harmonischen Schwingungen.

Frequenzgang einer Differenzialgleichung eines linearen Regelkreiselelements


Wir erinnern uns, die Differenzialgleichungen eines linearen Regelkreiselements lautet:

Methode

Differenzialgleichung 1. Ordnung:

$ T_1 \cdot \frac{d x_a}{dt} + x_a = x_e $

Zudem kennen wir bereits die Gleichungen für das Eingangs- und Ausgangssignal:

Methode

Eingangssignal:

$ x_e(j\omega) = \hat{x_e} \cdot e^{j\omega t} $

Methode

Ausgangssignal:

$ x_a(j\omega) = \hat{x_a} \cdot e^{j(\omega t + \rho(\omega))}$

Und wir können problemlos die Ableitung von der Gleichung des Ausgangssignal bilden:

Methode

1. Ableitung Ausgangssignal:

$ \frac{d}{dt} (x_a(j \omega)) = j \omega \cdot \hat{x}_a (\omega) \cdot e^{j (\omega t + \rho(\omega))} $

Nun haben wir mit den Gleichungen von $ x_e(j\omega), x_a(j \omega) $ und $ \frac{d}{dt} (x_a(j \omega)) $ alle notwendigen Angaben um unsere Differenzialgleichung auszufüllen.

$ T_1 \cdot \frac{d x_a}{dt} + x_a = x_e $

$ \Longrightarrow $

$ T_1 \cdot ( j \omega \cdot \hat{x}_a (\omega) \cdot e^{j (\omega t + \rho(\omega))}) + (\hat{x_a} \cdot e^{j(\omega t + \rho(\omega))}) = \hat{x_e} \cdot e^{j\omega t}$

Mit dem Wissen, dass $ x_a(j \omega) = \hat{x}_a (\omega) \cdot e^{j(\omega t + \rho (\omega))}$, können wir unsere Differenzialgleichung weiter zusammenfassen:

$ x_a(j \omega) \cdot ( j \omega \cdot T_1 + 1) = x_e(j \omega) $

Nun lösen wir die Differezialgleichung nach $ x_a( j \omega )$ auf und erhalten:

$ x_a (j \omega) = \frac{ x_e (j \omega)}{1 + j\omega \cdot T_1} $

Nun können wir auch problemlos den Frequenzgang $ F (j \omega) $ bestimmen, denn wir wissen, dass sich dieser aus dem Quotienten von $ x_a (j \omega) $ und $ x_e ( j \omega) $ ergibt.

Methode

Frequenzgang:

$F (j \omega) = \frac{x_a ( j \omega)}{x_e (j \omega)} = \frac{ 1}{ 1 + j\omega \cdot T_1 } $

Also $ F (j \omega) = \frac{ 1}{ 1 + j\omega \cdot T_1 } $ für die gegebene Differenzialgleichung.

Im letzten Schritt möchten wir natürlich auch noch wissen, wie es sich mit dem Betrag und der Phase des Frequenzgangs verhält und können dies auch ganz einfach aus unseren bisherigen Ergebnissen ermitteln:

Methode

Betrag des Frequenzgangs:

$ | F (j \omega) | = \frac{1}{\sqrt{ 1 + \omega^2 \cdot T_1^2}} $

Methode

Phase des Frequenzgangs:

$ tan \rho (\omega) = \frac{Im \{F (j \omega)\}}{ Re \{F ( j \omega)\}} = - \omega \cdot T_1 $