ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Thermodynamik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
2. Hauptsatz der Thermodynamik > Exergie und Anergie:

Exergie und Anergie: Wärme

WebinarTerminankündigung:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Die Exergie der Wärme $E_Q$ ist derjenige Teil der zugeführten Wärme, welche in Arbeit umgewandelt werden kann. Um die Exergie der Wärme herzuleiten wird ein reversibler Kreisprozess betrachtet und dieser in unendlich viele beliebig kleine Kreisprozesse zerlegt. Diese Kreisprozesse stellen sich als kleine Teil-Carnot-Prozesse dar. Das bedeutet, dass mehr Wärme zugeführt als abgeführt wird. Die zugeführte Wärme wird in Arbeit umgewandelt. Die Exergie der Wärme ist also derjenige Teil der zugeführten Wärme, welche von dem Kreisprozess in Arbeit umgewandelt werden kann, also die Nutzarbeit $W_k$ bzw. $W_C$. Die abgeführte Wärme geht an die Umgebung verloren, stellt also die Anergie der Wärme $B_Q$ dar.

Bei diesem Prozess wird dem System Wärme $Q$ (bei veränderlicher Temperatur $T \neq 0$) zugeführt und dann Wärme (bei konstanter Umgebungstemperatur $T_b = const$) wieder abgegeben. Innerhalb des System wird die zugeführte Wärme in Arbeit und die zugeführte Arbeit in Wärme verwandelt. Dabei ist die Wärmezufuhr größer als die Wärmeabfuhr und die abgegebene Arbeit größer als die zugeführte (siehe auch Abschnitt Carnot-Prozess).

Im T,S-Diagramm sieht die Zustandsänderung wie folgt aus:

Exergie der Wärme
Exergie der Wärme

Im obigen T,S-Diagramm ist die Zustandsänderung von 1 nach 2 beschrieben. Der kleine Streifen stellt die Exergie $dE_Q$ für einen beliebig kleinen Kreisprozess dar. Die Fläche über $T_b$ ist die gesamte Exergie $E_{12}$, die Fläche unter $T_b$ die gesamte Anergie $B_{12}$. Die Gesamtfläche stellt die zu- und abgeführte Wärmemenge $Q_{12}$ dar. Der obere Anteil (Exergie) ist die zugeführte Wärme, welche vollständig in Arbeit umgewandelt werden kann. Der untere Teil (Anergie) ist die abgeführte Wärme, welche nicht verwendet werden kann.

Der Unterschied zu dem T,S-Diagramm beim Carnot-Prozess (Rechteck) liegt darin, dass hier die Zustandsänderung von Zustand 2 auf Zustand 4 (siehe T,S-Diagramm für Carnot-Prozess) erfolgt. Die Zwischenschritte 1 und 3 werden hier nicht berücksichtigt, da von Zustand 4 - 1 und 2 - 3 keine Wärme übertragen wird. Das bedeutet wiederrum eine veränderliche Temperatur $T \neq const$ über die gesamte Zustandsänderung.

Bestimmung der Exergie der Wärme

Der kleine Streifen mit der Fläche $dE_Q$ wird über die gesamte Zustandsänderung integriert, unter Berücksichtigung von dem Wirkungsgrad $\eta_c$ des Carnot Prozesses für die Temperatur $T$:

$dE_Q = -dW_C = \eta_C dQ = (1 - \frac{T_b}{T}) dQ$

Integration:

$E_{Q12} = \int_1^2  (1 - \frac{T_b}{T}) dQ$.

$E_{Q12} = \int_1^2  dQ - \frac{T_b}{T} dQ$.

Da $T_b$ konstant ist und das erste $dQ$ integriert werden kann, ergibt sich:

Methode

$E_{Q12} = Q_{12} - T_b \int_1^2  \frac{1}{T} dQ$.

Das kann man mit $\int_1^2 \frac{dQ}{T} = S_{12}$ auch schreiben als:

Methode

$E_{Q12} = Q_{12} - T_b S_{12}$.

Will man die Entropieänderung $S_2 - S_1$ mitberücksichtigen so ergibt sich unter Verwendung von $dS = \frac{dQ + dW_{diss}}{T}$ aufgelöst nach $dQ$ und eingesetzt in $E_{Q12} = Q_{12} - T_b \int_1^2  \frac{1}{T} dQ$ die folgende Gleichung:

Methode

$E_{Q12} = Q_{12} - T_b (S_2 - S_1) + T_b \int_1^2 \frac{dW_{diss}}{T}$.

Bestimmung der Anergie der Wärme

Die Anergie der Wärme wird berechnet durch

$Energie = Exergie + Anergie$

$Anergie = Energie - Exergie$

$B_{Q12} = Q_{12} - E_{Q12}$.

Aus den obigen Gleichungen folgt demnach:

Methode

$B_{Q12} = T_b \int_1^2  \frac{1}{T} dQ$.

Das kann man mit $\int_1^2 \frac{dQ}{T} = S_{12}$ auch schreiben als:

Methode

$B_{Q12} = T_b S_{12}$.

Unter Berücksichtigung der Entropieänderung ergibt sich:

Methode

$B_{Q12} = T_b (S_2 - S_1) + T_b \int_1^2 \frac{dW_{diss}}{T}$.

Die obigen Gleichungen gelten allgemein, also für reversible und irreversible Vorgänge. Betrachtet man einen reversiblen Vorgang, so muss in den obigen Gleichungen $dW_{diss} = 0$ gesetzt werden.

Multiple-Choice
Bitte die richtigen Aussagen auswählen.
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Exergie und Anergie: Wärme ist Teil eines interaktiven Online-Kurses zum Thema Thermodynamik.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses ThermodynamikThermodynamik
Dieser Inhalt ist Bestandteil des Online-Kurses

Thermodynamik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Einführung in die Thermodynamik
    • Einleitung zu Kurs: Einführung in die Thermodynamik
  • Grundlagen der Thermodynamik
    • Einleitung zu Grundlagen der Thermodynamik
    • Thermodynamisches System
      • Einleitung zu Thermodynamisches System
      • Thermodynamische Zustandsgrößen
        • Einleitung zu Thermodynamische Zustandsgrößen
        • Extensive und intensive Zustandsgrößen
        • Spezifische und molare Zustandsgrößen
      • Zustandsänderung
    • Thermische Zustandsgrößen
      • Einleitung zu Thermische Zustandsgrößen
      • Volumen
      • Druck
      • Temperatur
    • Thermische Zustandsgleichungen
      • Einleitung zu Thermische Zustandsgleichungen
      • Thermische Zustandsgleichung des idealen Gases
      • Spezialfälle des allgemeinen Gasgesetzes
    • Thermische Ausdehnung
  • 1. Hauptsatz der Thermodynamik
    • 1. Hauptsatz der Thermodynamik für geschlossene Systeme
      • Energieerhaltungssatz, Systemenergie
      • Innere Energie, Wärme und Arbeit
        • Einleitung zu Innere Energie, Wärme und Arbeit
        • Arbeit am geschlossenen System
          • Einleitung zu Arbeit am geschlossenen System
          • Volumenänderungsarbeit
          • Nutzarbeit / Verschiebearbeit
          • Dissipationsarbeit
        • Wärme
      • Zusammenfassung für geschlossene Systeme
    • 1. Hauptsatz der Thermodynamik für offene Systeme
      • Stationärer Fließprozess
        • Einleitung zu Stationärer Fließprozess
        • Innere Energie, technische Arbeit, Verschiebearbeit
          • Einleitung zu Innere Energie, technische Arbeit, Verschiebearbeit
          • Verschiebearbeit
          • Technische Arbeit
        • Enthalpie
        • Kinetische und potentielle Energie
        • Massenstrom
        • Anwendungsbeispiele offenes System mit stationärem Fließprozess
    • Kalorische Zustandsgleichungen
      • Kalorische Zustandsgleichung / Wärmekapazität (homogenes System)
      • Kalorische Zustandsgleichung / Wärmekapazität (ideales Gas)
      • Mittelwert der spezifischen Wärmekapazität
      • Isentropenexponent
  • 2. Hauptsatz der Thermodynamik
    • Einleitung zu 2. Hauptsatz der Thermodynamik
    • Entropie
    • Einfache Zustandsänderungen des idealen Gases
      • Einleitung zu Einfache Zustandsänderungen des idealen Gases
      • Isochore Zustandsänderung
        • Einleitung zu Isochore Zustandsänderung
        • Anwendungsbeispiele: Isochore Zustandsänderung
      • Isobare Zustandsänderung
      • Isotherme Zustandsänderung
      • Isentrope Zustandsänderung
        • Einleitung zu Isentrope Zustandsänderung
        • Anwendungsbeispiel: Molmasse, Isentropenexponent, Wärmekapazität
      • Polytrope Zustandsänderung
      • Adiabate Zustandsänderung
    • Kreisprozesse
      • Einleitung zu Kreisprozesse
      • Rechtslaufender Kreisprozess
        • Einleitung zu Rechtslaufender Kreisprozess
        • Wärmekraftmaschine
      • Linkslaufender Kreisprozess
        • Einleitung zu Linkslaufender Kreisprozess
        • Wärmepumpe und Kältemaschine
      • Carnot-Prozess
        • Beschreibung des Carnot-Prozesses
        • Nutzarbeit des Carnot-Prozesses aus der Arbeit
        • Erkenntnisse aus dem Carnot-Prozess
    • Exergie und Anergie
      • Einleitung zu Exergie und Anergie
      • Exergie und Anergie: Geschlossenes System
      • Exergie und Anergie: Offenes System
      • Exergie und Anergie: Wärme
      • Exergieverlust
      • Exergetischer Wirkungsgrad
  • Kreisprozesse
    • Kreisprozesse der Gasturbinenanlagen
      • Einleitung zu Kreisprozesse der Gasturbinenanlagen
      • Joule-Prozess
      • Ericsson-Prozess
    • Stirling-Prozess
    • Kreisprozesse der Verbrennungsmotoren
      • Einleitung zu Kreisprozesse der Verbrennungsmotoren
      • Otto-Prozess (Gleichraumprozess)
      • Diesel-Prozess (Gleichdruckprozess)
  • 67
  • 13
  • 159
  • 72
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 23.07.2016:
    "Es wird sehr viel Wissen vermittelt, welches kompakt gehalten, jedoch trotzdem verständlich gelehrt wird. Zusammenhänge werden gut erklärt und das Wichtigste wird noch einmal Hervorgehoben. Alles in Allem bin ich sehr zufrieden. Leider bin ich etwas spät auf diesen Onlinekurs gestoßen. "

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 28.02.2016:
    "gut nachvollziehbar"

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 27.01.2016:
    "Gute Rechenaufgaben zum selber nachrechnen, Lösung ausführlich und verständlich, gute Videos"

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 12.10.2015:
    "Gut gut läuft :D"

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 09.08.2015:
    "sehr ausführlich und einfach verständlich beschrieben"

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 20.05.2015:
    "Super Kurs, alles total verständlich erklärt!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen