ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Operations Research 1
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Lineare Programmierung > Standardform: Maximierungsproblem > Simlpex-Algorithmus: Einführung:

Die Big-M-Methode des primalen Simplexverfahrens

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

In den vorherigen Abschnitten ist der duale Simplexalgorithmus angewandt worden. Dabei ist ein lineares Optimierungsproblem so umgeformt worden, dass es in Standardform (Maximierungsproblem, Kleiner-Gleich-Nebenbedingung, Nichtnegativitätsbedingung) vorlag, jedoch negative Werte auf der rechten Seite vorhanden waren.

Bei der Big-M-Methode des primalen Simplexverfahrens (auch: Groß-M-Methode) wird das lineare Optimierungsproblem ebenfalls zunächst in die Standardform überführt.

Methode

Voraussetzung für die Anwendung der Big-M-Methode des primalen Simplexverfahrens:

  1. Es muss die Standardform vorliegen (Maximierungsproblem, kleiner-gleich-Nebenbedingung, Nichtnegativitätsbedingung)

  2. Die Standardform muss dann in die Normalform überführt werden (Gleichheitsbedingung) mittels Einführung von Schlupfvariablen.

  3. Es liegen negative Koeffizienten auf der Rechten-Seite der Nebenbedingungen vor ($b_i \le 0$).

Es wird im folgenden anhand eines Beispiels gezeigt, wie bei der Big-M-Methode des primalen Simplexverfahrens vorgegangen wird.

Gegeben sei das folgende Optimierungsproblem

$f(x_1, x_2) = 2x_1 + x_2$  $ \rightarrow$   max!

u.d.N.

$x_1 + x_2 \ge 8$

$3x_1 + x_2 \ge 12$

$x_1 + x_2 \le 10$

$x_1, x_2 \ge 0$

Das Optimierungsmodell liegt noch nicht in Standardform vor (größer-gleich-Nebenbedingungen vorhanden). Es muss also zunächst in diese transformiert werden. Eine größer-gleich-Nebenbedinung wird ein eine kleiner-gleich-Nebenbedingung transformiert, indem diese mit $-1$ multipliziert wird:

$f(x_1, x_2) = 2x_1 + x_2$  $ \rightarrow$   max!

u.d.N.

$-x_1 - x_2 \le -8$

$-3x_1 - x_2 \le -12$

$x_1 + x_2 \le 10$

$x_1, x_2 \ge 0$

Das Optimierungsmodell liegt nun in Standardform vor (Maximierungsproblem, kleiner-gleich-Bedingungen, Nichtnegativitätsbedingung). Allerdings sind hier die Werte der rechten Seite nicht alle positiv, weshalb keine zulässige 1. Basislösung existiert. Es muss demnach das duale Simplexverfahren angewandt werden. Das Opmtimierungsproblem wird zunächst in die Normalform überführt (Einfügen von Schlupfvarbiablen um Gleichheitsbedingungen zu erhalten):

$f(x_1, x_2) = 2x_1 + x_2$  $ \rightarrow$   max!

u.d.N.

$-x_1 - x_2 + x_3                              = -8$

$-3x_1 - x_2        + x_4                     = -12$

$x_1 + x_2                           + x_5    = 10$

$x_1, x_2, x_3, x_4, x_5 \ge 0$

Es sind hier für die Schlupfvariablen $x_3, x_4, x_5$ eingefügt worden, anstelle von $y_1, y_2,y_3$. Grund dafür ist, dass bei der Big-M-Methode die künstlichen Variablen $y_i$ eingefügt werden. Der Übersicht halber ist demnach für die Schlupfvariablen $x_i$ gewählt worden.

Nachdem nun die Normalform vorliegt, kann als nächstes die Big-M-Methode angewandt werden.

Multiple-Choice
Bitte die richtigen Aussagen auswählen.
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Vorstellung des Online-Kurses Operations ResearchOperations Research
Dieser Inhalt ist Bestandteil des Online-Kurses

Operations Research 1

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Operations Research 1 - Lineare Optimierung, Graphentheorie und Netzplantechnik
    • Einleitung zu Kurs: Operations Research 1 - Lineare Optimierung, Graphentheorie und Netzplantechnik
  • Lineare Programmierung
    • Einleitung zu Lineare Programmierung
    • Definition: Lineares Programm
    • Standardform: Maximierungsproblem
      • Einleitung zu Standardform: Maximierungsproblem
      • Grafische Lösung eines Maximierungsproblems
        • Einleitung zu Grafische Lösung eines Maximierungsproblems
        • Beispiel: Grafische Lösung eines Maximierungsproblems
      • Umformung in die Standardform (Maximierungsproblem)
      • Umformung in die Normalform (Maximierungsproblem)
      • Simlpex-Algorithmus: Einführung
        • Einleitung zu Simlpex-Algorithmus: Einführung
        • Primales Simlpexverfahren
          • Einleitung zu Primales Simlpexverfahren
          • Primales Simplexverfahren: Anfangstableau aufstellen
          • Primales Simplexverfahren: Pivotspalte/-zeile/-element
          • Primales Simplexverfahren: 1. Simplexschritt
          • Primales Simplexverfahren: Weitere Simplexschritte (optimale Lösung)
          • Beispiel: Maximierungsproblem / grafische Lösung
          • Beispiel: Maximierungsproblem / Primales Simplexverfahren
        • Duales Simplexverfahren
          • Einleitung zu Duales Simplexverfahren
          • Duales Simplexverfahren: Pivotzeile/-spalte/-element
          • Duales Simplexverfahren: Simplexschritte
        • Die Big-M-Methode des primalen Simplexverfahrens
          • Einleitung zu Die Big-M-Methode des primalen Simplexverfahrens
          • Die Big-M-Methode: Einfügen von künstlichen Variablen
          • Die Big-M-Methode: Künstliche Variablen als Basisvariablen
          • Big-M-Methode: Simplexschritt durchführen
          • Big-M-Methode: Weiterer Simplexschritt (zulässige Lösung)
          • Big-M-Methode: Weitere Simplexschritte (optimale Lösung)
      • Kanonische Form, Standardform, Normalform
      • Zusammenfassung: Maximierungsproblem
    • Minimierungsproblem
      • Einleitung zu Minimierungsproblem
      • Dualität - Primalproblem als Maximierungsproblem
      • Dualität - Primalproblem als Minimierungsproblem
      • Dualität - Dualproblem in Primalproblem
      • Beispiel: Primalproblem als Minimierungsproblem
      • Minimierungsproblem- Big-M/dualer Simplex
      • Zusammenfassung: Minimierungsproblem
    • Sonderfälle bei Optimierungsmodellen
      • Einleitung zu Sonderfälle bei Optimierungsmodellen
      • Beispiel: Minimierungsproblem ohne optimal Lösung
    • Sensitivitätsanalyse
      • Einleitung zu Sensitivitätsanalyse
      • Änderung der Zielfunktionskoeffizienten
        • Einleitung zu Änderung der Zielfunktionskoeffizienten
        • Beispiel: Sensitivitätsanalyse Zielfunktionskoeffizienten
      • Änderung der Restriktionen
    • Obere und untere Schranken bei Variablen
      • Untere Schranken
      • Obere Schranken
        • Einleitung zu Obere Schranken
        • Beispiel: Primaler Simplexalgorithmus
        • Beispiel: Vielzahl an beschränkten Variablen
    • Revidierter Simplex-Algorithmus
      • Einleitung zu Revidierter Simplex-Algorithmus
      • Beispiel: Revidierter Simplex-Algorithmus
  • Transport- und Zuordnungsprobleme
    • Das klassische Transportproblem
      • Einleitung zu Das klassische Transportproblem
      • Ausgleichsprüfung
      • Reduktion der Kostenmatrix
      • Eröffnungsverfahren
        • Einleitung zu Eröffnungsverfahren
        • Nord-Westecken-Verfahren
        • Rangfolgeverfahren
          • Einleitung zu Rangfolgeverfahren
          • Spaltenfolgeverfahren
          • Zeilenfolgeverfahren
          • Matrixminimumverfahren
        • Vogelsches-Approximations-Verfahren
      • Optimierungsverfahren
        • Einleitung zu Optimierungsverfahren
        • Stepping-Stone-Methode
        • MODI-Methode
    • Lineare Zuordnungsprobleme
      • Definition: Zuordnungsprobleme
      • Ungarische Methode
  • Netzplantechnik
    • Einführung Netzplantechnik
    • Ablaufplanung
      • Einleitung zu Ablaufplanung
      • Strukturplanung
      • Netzplanerstellung
    • Zeitplanung
      • Einleitung zu Zeitplanung
      • Beispiel 1: Vorgangsknotennetzplan
      • Beispiel 2: Vorgangsknotennetzplan
    • Kostenplanung
    • Kapazitätsplanung
  • Graphentheorie
    • Einführung: Graphentheorie
    • Kürzeste Wege
      • Einleitung zu Kürzeste Wege
      • Dijkstra-Algorithmus
      • Fifo-Algorithmus
  • 74
  • 11
  • 42
  • 144
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Operations Research 1

    Ein Kursnutzer am 22.06.2016:
    "top!! ;)"

  • Gute Bewertung für Operations Research 1

    Ein Kursnutzer am 05.12.2015:
    "Super erklärt !! "

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen