Das Volumen V stellt den Raum dar, den ein Stoff mit der Masse m ausfüllt. Solange durch Kapillarwirkungen wie etwa bei einzelnen Tropfen oder Blasen hervorgerufene Oberflächeneffekte keine Rolle spielen, ist die konkrete Form (Oberfläche) des Volumens zumeist ohne Bedeutung, es zählt nur die vom Zahlenwert festgehaltene Größe. Für einen konkreten Stoff ist das Volumen V über verschiedene Beziehungen fest mit der Masse m und Stoffmenge n verbunden.
Merke
Die im SI-System vorgeschriebenen Maßeinheiten für Volumen, Masse und Stoffmenge sind:
Volumen [V] = 1 m3, | Masse [m] = 1 kg und | Stoffmenge [n] = 1 kmol |
Die Masse m ist in diesem Zusammenhang eine Größe, die man im Maschinenbau bevorzugt. Sie beschreibt die Eigenschaft eines Körpers, gegenüber Änderungen seines Bewegungszustandes träge zu sein sowie Anziehungskräfte auf andere Körper auszuüben. Für das bei thermodynamischen Analysen häufig verwendete spezifische Volumen v eines Körpers bezieht man dessen Volumen V auf seine Masse m. Damit kann der Raumbedarf eines Stoffes unabhängig von seiner Masse oder Stoffmenge angegeben werden. Der Kehrwert des spezifischen Volumens ist die bekannte physikalische Größe Dichte ρ.
Methode
v =
Stoffmengen verwendet man bevorzugt in der Verfahrenstechnik. Die Stoffmenge n gibt an, wie viele Teilchen der betreffende Stoff enthält. In den praktisch relevanten Fällen kann die Anzahl der in einem Körper vorhandenen Teilchen nur durch unvorstellbar hohe und für eine rechnerische Verarbeitung kaum handhabbare Zahlen angegeben werden. Deshalb definiert man die Stoffmenge n als das Verhältnis der in einem Körper tatsächlich vorhandenen Teilchenzahl N zur Avogadro-Konstante NA
Methode
Bezieht man das Volumen V auf die Stoffmenge n erhält man das molare Volumen Vm, den Kehrwert des molaren Volumens bezeichnet man als Stoffmengendichte d:
Methode
Nach DIN 1304 Allgemeine Formelzeichen sind Größen, die auf Stoffmengen bezogen werden, mit dem Index „
Zusammenfassung der formelmäßigen Beziehungen zwischen Volumen, Masse und Stoffmenge:
Volumen | Masse | Stoffmenge | |
Volumen | |||
Masse | |||
Stoffmenge |
Dabei bedeuten:
M (molare Masse) [M] =
In stationär offenen Systemen wird man mit zeitlich konstanten Massenströmen oder Volumenströmen konfrontiert. Aus der Masse m wird der Massenstrom
Methode
Dabei ist die Strömungsgeschwindigkeit c über die Länge s des geschlossenen Systems, die Zeitspanne τ und den Strömungsquerschnitt A mit dem Massenstrom und dem Volumenstrom
Die Kontinuitätsgleichung für einen stationären Volumen- und Massenstrom ergibt sich so zu: