ZU DEN KURSEN!

Höhere Mathematik 2: Analysis und Gewöhnliche Differentialgleichungen - Partielle Ableitung höherer Ordnung

Kursangebot | Höhere Mathematik 2: Analysis und Gewöhnliche Differentialgleichungen | Partielle Ableitung höherer Ordnung

Höhere Mathematik 2: Analysis und Gewöhnliche Differentialgleichungen

Partielle Ableitung höherer Ordnung

ingenieurkurse JETZT WEITER LERNEN!

Weitere Lernvideos sowie zahlreiche Materialien erwarten dich:
Komplettpaket für Ingenieurstudenten


3108 Lerntexte mit den besten Erklärungen

501 weitere Lernvideos von unseren erfahrenen Dozenten

5120 Übungen zum Trainieren der Inhalte

3108 informative und einprägsame Abbildungen

This browser does not support the video element.

Lassen sich die Ableitungen und einer differenzierbaren Funktion ebenfalls differenzieren, so kann man auch die Ableitung 2. Ordnung bilden. Lässt sich dieser Vorgang mehrfach wiederholen so spricht man von partiellen Ableitungen beliebiger Ordnung.

Ableitungen 2. Ordnung: 

Sind die beiden Ableitungen und  stetig differenzierbar, so sind sie in jedem gewählten Punkt identisch also  = .

Merke

Man beachte immer die Reihenfolge der Ableitungen! So wird zuerst partiell nach x abgeleitet und anschließend nach y

Beispiel

In welcher Reihenfolge wird abgeleitet?

Zuerst leitet man die Funktion nach  ab, als Nächstes nach  und anschließend wieder mal nach  .

Ableitungen beliebiger [n-ter] Ordnung:

Bei mehrfacher partieller Ableitung spricht man wie bereits erwähnt von partiellen Ableitungen beliebiger Ordnung. Aus der formalen Schreibweise

ist ersichtlich, dass k-mal und (n-k)-mal abgeleitet wird, wobei .

Merke

Es gilt der Satz von Schwarz: Bildet man mehrere Partielle Ableitungen nacheinander, so kann die Reihenfolge der Ableitungen vertauscht werden, sofern sie alle stetig sind, dh. keine Sprünge aufweisen. 

Anwendungsbeispiele

Beispiel

Gegeben sei die Funktion

1. Möglichkeit

Die Ableitung nach und dann nach :





Die Ableitung nach und dann nach :






= .

2. Möglichkeit

Oder man wählt und dann :





Und und dann :






= .

3. Möglichkeit

Man wählt und dann :





Man wählt und dann :






= .

This browser does not support the video element.

Lerne erfolgreich mit unseren Online-Kursen

This browser does not support the video element.

Sichere dir jetzt das kompakte Wissen mit unserem Vollzugriff Komplettpaket für Ingenieurstudenten


  • Alle Lernmaterialien komplett mit 501 Videos, 5120 interaktiven Übungsaufgaben und 3108 Lerntexten
  • Günstiger als bei Einzelbuchung nur 14,90 € mtl. bei 1 Monaten Mindestvertragslaufzeit
Jetzt entdecken

This browser does not support the video element.

Einzelkurs: Höhere Mathematik 2: Analysis und Gewöhnliche Differentialgleichungen


  • Die besten Lernmaterialien: 55 Texte, 55 Abbildungen, 10 Videos und 79 Übungsaufgaben.
Jetzt entdecken