ZU DEN KURSEN!

Technische Mechanik 2: Elastostatik - Beispiel: Flächenträgheitsmomente Dreieck

Kursangebot | Technische Mechanik 2: Elastostatik | Beispiel: Flächenträgheitsmomente Dreieck

Technische Mechanik 2: Elastostatik

Beispiel: Flächenträgheitsmomente Dreieck

ingenieurkurse JETZT WEITER LERNEN!

Weitere Lernvideos sowie zahlreiche Materialien erwarten dich:
Komplettpaket für Ingenieurstudenten


3108 Lerntexte mit den besten Erklärungen

501 weitere Lernvideos von unseren erfahrenen Dozenten

5120 Übungen zum Trainieren der Inhalte

3108 informative und einprägsame Abbildungen

This browser does not support the video element.

In diesem Abschnitt soll gezeigt werden, wie man die Flächenträgheitsmomente für ein Dreieck bestimmt.

Beispiel: Dreieck

Gegeben sei das obige Dreieck mit den Seitenlängen und . Die Achsen gehen nicht durch den Schwerpunkt, sondern fallen mit den Seiten des Dreiecks zusammen.

Es wird wieder ein infinitesimal kleiner Streifen der Breite betrachtet, welcher überall den gleichen Abstand zur -Achse besitzt. Die Länge des Steifens ist nun nicht mehr konstant , sondern abhängig davon, wo genau man sich auf der -Achse befindet. Wir bestimmen zunächst die unten rot gekennzeichnete Gerade

Bestimmung der Geraden

Eine Gerade wird allgemein berechnet durch:

Methode

        --Ebene


In diesem Beispiel:

Methode

     --Ebene

Es fehlt noch die Steigung . Zur Berechnung der Steigung beginnt man auf der y-Achse, dort wo die rote Gerade beginnt. Von dort aus soll das andere Ende der Gerade auf der z-Achse erreicht werden. Dazu geht man -Schritte nach rechts in negative y-Richtung und -Schritte nach unten in positive z-Richtung., daraus folgt

Methode

 


Umstellen nach :

  

   

     |b ausklammern

Methode

Bestimmung der Flächenträgheitsmomente

Die Integration kann nun erfolgen:

Methode

mit

 


Die Integration erfolgt über die gesamte Länge :



Für die Bestimmung von wird ein infinitesimal kleiner Streifen mit der Länge und der Breite gewählt:

Die Integration erfolgt mit:

 mit  mit



Bestimmung des Deviationsmoments

Da keine der beiden Achsen Symmetrieachsen darstellen, ist das Deviationsmoment ungleich Null.

  

Um dieses zu bestimmen, gibt es zwei Möglichkeiten.

1. Möglichkeit:

Es wird die Grafik zur Berechnung von verwendet. Bei einem Rechteck liegt der Schwerpunkt in der Mitte. Das bedeutet also bei . Für dieses infinitesimale Rechteck gilt zudem mit  (siehe oben).



Einsetzen von :



Einsetzen von  :

    |Klammer auflösen

      |Binomische Formel anwenden

   |Klammer auflösen



Integriert wird wieder über die Höhe :



2. Möglichkeit

Bei dieser zweiten Möglichkeit wird der infinitesimale Streifen betrachtet, welcher zur Berechnung von verwendet wurde. Hier gilt ebenfalls wieder, dass der Schwerpunkt eines Rechtecks in der Mitte liegt, also .

  mit   mit  

Einsetzen von :

   

Einsetzen von :

     |Binomische Formel

   |Klammer auflösen

 

Integriert wird über die gesamte Höhe :

 



Merke

Bei der Bestimmung von Flächenträgheitsmomenten eines Dreiecks ist es immer wichtig die Geradengleichung aufzustellen. 

This browser does not support the video element.

Lerne erfolgreich mit unseren Online-Kursen

This browser does not support the video element.

Sichere dir jetzt das kompakte Wissen mit unserem Vollzugriff Komplettpaket für Ingenieurstudenten


  • Alle Lernmaterialien komplett mit 501 Videos, 5120 interaktiven Übungsaufgaben und 3108 Lerntexten
  • Günstiger als bei Einzelbuchung nur 14,90 € mtl. bei 1 Monaten Mindestvertragslaufzeit
Jetzt entdecken

This browser does not support the video element.

Einzelkurs: Technische Mechanik 2: Elastostatik


  • Die besten Lernmaterialien: 110 Texte, 110 Abbildungen, 26 Videos und 139 Übungsaufgaben.
Jetzt entdecken