ZU DEN KURSEN!

Technische Mechanik 3: Dynamik - Beispiel: Senkrechter Wurf

Kursangebot | Technische Mechanik 3: Dynamik | Beispiel: Senkrechter Wurf

Technische Mechanik 3: Dynamik

Beispiel: Senkrechter Wurf

Inhaltsverzeichnis

Beispiel

Ein Tennisball wird mit einer Anfangsgeschwindigkeit von senkrecht nach oben geworfen. Die -Achse zeigt hierbei von der Anfangslage aus senkrecht nach oben.

Welche Höhe erreicht der Ball?

Wie lange dauert es, bis der Ball den höchsten Punkt erreicht (Steigzeit)?

Wie lange dauert es, bis der Ball wieder zur Ausgangslage zurückkehrt (Wurfzeit)?

Die Erdbeschleunigung wirkt dem Wurf entgegen. Diese ist nämlich im Gegensatz zur -Achse nach unten gerichtet:

Methode

.

Die Beschleunigung kann ermittelt werden durch die Ableitung der Geschwindigkeit nach der Zeit:

Methode

.

Die Geschwindigkeit ergibt sich also durch Integration:

Methode







.

Diese Formel kann auch dem Abschnitt gleichförmig beschleunigte Bewegung entnommen werden. Es gilt sowie (Messung beginnt erst beim Abwurf):

Methode

.

Die Geschwindigkeit kann bestimmt werden durch die Ableitung des Ortes nach der Zeit :

Methode

.

Der Ort ergibt sich also durch Integration wie folgt:

Methode

.

Einsetzen von :

.

Integration:

Methode



.

Die Formel kann auch dem Abschnitt gleichförmig beschleunigte Bewegung entnommen werden. Dort ist die Integration bereits durchgeführt worden. Zum besseren Verständins und der Übersicht halber ist die Vorgehensweise hier aber nochmals aufgezeigt worden.

Es gilt und :

Methode

.

Wurfhöhe

Es soll nun zunächst die Wurfhöhe bestimmt werden. Diese kann man aus dem Weg bestimmen, bei welchem die Geschwindigkeit ist (am höchsten Punkt "steht" der Ball kurz in der Luft). Um die maximale Höhe zu bestimmen, kann man folgende Formel anwenden:

Methode

.

Steigzeit

Hierbei ist allerdings unbekannt. ist in diesem Fall die Steigzeit . Wenn die Steigzeit bekannt ist, dann kann man berechnen wie hoch der Ball fliegt. Die Steigzeit kann man bestimmen aus:

Methode

.

Für und umstellen nach gilt:

Methode

Die Steigzeit beträgt 1,22 Senkunden.

Steighöhe

Als nächstes kann nun die Steighöhe bestimmt werden mit:

Methode

.

Einsetzen von :

Methode

.

Der Ball erreicht eine Höhe von 7,34 m.

Als nächstes ist noch die gesamte Wurfzeit von Interesse. D.h. also die Zeit, die der Ball vom Wurf nach oben bis zurück zur Ausgangslange benötigt. Ist der Ball wieder zurück in seiner Ausgangslage, so befindet sich dieser wieder am Ort (Ursprungsort). 

Methode

.

Mit und :

Methode

.

Auflösen nach :

Methode

Die gesamte Wurfzeit ist die doppelte Steigzeit.

Merke

Es gilt also Steigzeit gleich Fallzeit. 
Lerne erfolgreich mit unseren Online-Kursen

This browser does not support the video element.

Sichere dir jetzt das kompakte Wissen mit unserem Vollzugriff Komplettpaket für Ingenieurstudenten


  • Alle Lernmaterialien komplett mit 501 Videos, 5120 interaktiven Übungsaufgaben und 3108 Lerntexten
  • Günstiger als bei Einzelbuchung nur 14,90 € mtl. bei 1 Monaten Mindestvertragslaufzeit
Jetzt entdecken

This browser does not support the video element.

Einzelkurs: Technische Mechanik 3: Dynamik


  • Die besten Lernmaterialien: 73 Texte, 73 Abbildungen, 24 Videos und 106 Übungsaufgaben.
Jetzt entdecken