ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Thermodynamik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
2. Hauptsatz der Thermodynamik > Kreisprozesse > Carnot-Prozess:

Erkenntnisse aus dem Carnot-Prozess

WebinarTerminankündigung:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

In diesem Abschnitt soll gezeigt werden, welche Erkenntnisse aus dem thermischen Wirkungsgrad des Carnot-Prozesses gewonnen werden können. Hierzu wird der thermische Wirkungsgrad nochmals aufgeführt:

Methode

$\eta_C = 1 - \frac{T_{I}}{T_{II}} $

mit

$T_I $ niedrigsten Temperatur

$T_{II}$ höchste Temperatur

$T$ in $K$

Es ist deutlich zu erkennen, dass der Wirkungsgrad des Carnot-Prozesses nur von den zwei Temperaturen $T_I$ und $T_{II}$ abhängt. Die Wärmezufuhr und -abfuhr beeinflusst den Wirkungsgrad nicht.

Erkenntnisse:

  • Je höher die Temperatur $T_{II}$ (In Kelvin) ist, bei welcher Wärme zugeführt wird, desto besser ist das für den Wirkungsgrad des Carnot-Prozesses. Der Grund dafür liegt darin, dass weniger Wärme zugeführt werden muss, je höher die Temperatur $T_{II}$ ist. Im Umkehrschluss gilt, dass der Wirkungsgrad umso höher wird, je niedriger die Temperatur $T_I$ ist, bei welcher die Wärme abgeführt wird. Der Grund liegt darin, dass je geringer die Temperatur $T_I$ ist, desto mehr von der zugeführten Wärme konnte in Arbeit umgewandelt werden. 
  • Da weder der absolute Nullpunkt (0 K = -273,15 °C) noch unendlich hohe Temperaturen erreicht werden können, ist ein Wirkungsgrad von 100 % ausgeschlossen. Das bedeutet, der Wirkungsgrad des Carnot-Prozesses nimmt immer Werte unter 1 an. Die niedrigeste Temperatur die $T_I$ je annehmen kann ist die Umgebungstemperatur $T_b$. Das bedeutet wiederrum, dass der Wirkungsgrad niemals den Wert 1 annehmen kann (100%-ige Umwandlung der zugeführten Wärme in Arbeit). Es ist also niemals möglich die zugeführte Wärme vollständig in Arbeit umzuwandeln. Damit eine vollständige Energieumwandlung möglich wäre, müsste $T_I$ auf $0 \; K$ bzw. $-273,15 °C$ gesenkt werden. Das ist aber nicht möglich.
  • Es wird außerdem deutlich, dass $T_I$ und $T_{II}$ ein Temperaturunterschied aufweisen müssen. Bei $T_I = T_{II}$ würde der Wirkungsgrad den Wert 0 annehmen. Je größer dieser Temperaturunterschied ausfällt, desto besser ist das für den Wirkungsgrad des Carnot-Prozesses. 
Lückentext
Bitte die Lücken im Text sinnvoll ausfüllen.
Es ist bekannt, dass bei einem Carnot-Prozess ein Temperaturunterschied zwischen Punkt 1 zu Punkt 2 von $20K$ entsteht und das $T_{II}=320K$ ist. Somit ergibt sich ein thermischer Wirkungsgrad von (auf vier Stellen hinter dem Komma runden).
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.

Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Erkenntnisse aus dem Carnot-Prozess ist Teil eines interaktiven Online-Kurses zum Thema Thermodynamik.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses ThermodynamikThermodynamik
Dieser Inhalt ist Bestandteil des Online-Kurses

Thermodynamik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Einführung in die Thermodynamik
    • Einleitung zu Kurs: Einführung in die Thermodynamik
  • Grundlagen der Thermodynamik
    • Einleitung zu Grundlagen der Thermodynamik
    • Thermodynamisches System
      • Einleitung zu Thermodynamisches System
      • Thermodynamische Zustandsgrößen
        • Einleitung zu Thermodynamische Zustandsgrößen
        • Extensive und intensive Zustandsgrößen
        • Spezifische und molare Zustandsgrößen
      • Zustandsänderung
    • Thermische Zustandsgrößen
      • Einleitung zu Thermische Zustandsgrößen
      • Volumen
      • Druck
      • Temperatur
    • Thermische Zustandsgleichungen
      • Einleitung zu Thermische Zustandsgleichungen
      • Thermische Zustandsgleichung des idealen Gases
      • Spezialfälle des allgemeinen Gasgesetzes
    • Thermische Ausdehnung
  • 1. Hauptsatz der Thermodynamik
    • 1. Hauptsatz der Thermodynamik für geschlossene Systeme
      • Energieerhaltungssatz, Systemenergie
      • Innere Energie, Wärme und Arbeit
        • Einleitung zu Innere Energie, Wärme und Arbeit
        • Arbeit am geschlossenen System
          • Einleitung zu Arbeit am geschlossenen System
          • Volumenänderungsarbeit
          • Nutzarbeit / Verschiebearbeit
          • Dissipationsarbeit
        • Wärme
      • Zusammenfassung für geschlossene Systeme
    • 1. Hauptsatz der Thermodynamik für offene Systeme
      • Stationärer Fließprozess
        • Einleitung zu Stationärer Fließprozess
        • Innere Energie, technische Arbeit, Verschiebearbeit
          • Einleitung zu Innere Energie, technische Arbeit, Verschiebearbeit
          • Verschiebearbeit
          • Technische Arbeit
        • Enthalpie
        • Kinetische und potentielle Energie
        • Massenstrom
        • Anwendungsbeispiele offenes System mit stationärem Fließprozess
    • Kalorische Zustandsgleichungen
      • Kalorische Zustandsgleichung / Wärmekapazität (homogenes System)
      • Kalorische Zustandsgleichung / Wärmekapazität (ideales Gas)
      • Mittelwert der spezifischen Wärmekapazität
      • Isentropenexponent
  • 2. Hauptsatz der Thermodynamik
    • Einleitung zu 2. Hauptsatz der Thermodynamik
    • Entropie
    • Einfache Zustandsänderungen des idealen Gases
      • Einleitung zu Einfache Zustandsänderungen des idealen Gases
      • Isochore Zustandsänderung
        • Einleitung zu Isochore Zustandsänderung
        • Anwendungsbeispiele: Isochore Zustandsänderung
      • Isobare Zustandsänderung
      • Isotherme Zustandsänderung
      • Isentrope Zustandsänderung
        • Einleitung zu Isentrope Zustandsänderung
        • Anwendungsbeispiel: Molmasse, Isentropenexponent, Wärmekapazität
      • Polytrope Zustandsänderung
      • Adiabate Zustandsänderung
    • Kreisprozesse
      • Einleitung zu Kreisprozesse
      • Rechtslaufender Kreisprozess
        • Einleitung zu Rechtslaufender Kreisprozess
        • Wärmekraftmaschine
      • Linkslaufender Kreisprozess
        • Einleitung zu Linkslaufender Kreisprozess
        • Wärmepumpe und Kältemaschine
      • Carnot-Prozess
        • Beschreibung des Carnot-Prozesses
        • Nutzarbeit des Carnot-Prozesses aus der Arbeit
        • Erkenntnisse aus dem Carnot-Prozess
    • Exergie und Anergie
      • Einleitung zu Exergie und Anergie
      • Exergie und Anergie: Geschlossenes System
      • Exergie und Anergie: Offenes System
      • Exergie und Anergie: Wärme
      • Exergieverlust
      • Exergetischer Wirkungsgrad
  • Kreisprozesse
    • Kreisprozesse der Gasturbinenanlagen
      • Einleitung zu Kreisprozesse der Gasturbinenanlagen
      • Joule-Prozess
      • Ericsson-Prozess
    • Stirling-Prozess
    • Kreisprozesse der Verbrennungsmotoren
      • Einleitung zu Kreisprozesse der Verbrennungsmotoren
      • Otto-Prozess (Gleichraumprozess)
      • Diesel-Prozess (Gleichdruckprozess)
  • 67
  • 13
  • 159
  • 72
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 23.07.2016:
    "Es wird sehr viel Wissen vermittelt, welches kompakt gehalten, jedoch trotzdem verständlich gelehrt wird. Zusammenhänge werden gut erklärt und das Wichtigste wird noch einmal Hervorgehoben. Alles in Allem bin ich sehr zufrieden. Leider bin ich etwas spät auf diesen Onlinekurs gestoßen. "

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 28.02.2016:
    "gut nachvollziehbar"

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 27.01.2016:
    "Gute Rechenaufgaben zum selber nachrechnen, Lösung ausführlich und verständlich, gute Videos"

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 12.10.2015:
    "Gut gut läuft :D"

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 09.08.2015:
    "sehr ausführlich und einfach verständlich beschrieben"

  • Gute Bewertung für Thermodynamik

    Ein Kursnutzer am 20.05.2015:
    "Super Kurs, alles total verständlich erklärt!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen