Technische Mechanik 2: Elastostatik

  1. Beispiel zu Spannungen im Stab: Konischer Stab
    Stabbeanspruchungen > Spannungen im Stab > Beispiel zu Spannungen im Stab: Konischer Stab
    Beispiel zu Spannungen im Stab: Konischer Stab
    ... indem man sich diese rote Gerade in einem Koordinatensystem vorstellt. Hierbei wird nur der obere Teil des konischen Stabes betrachtet, weil der Radius und nicht der Durchmesser betrachtet wird: Dabei stellt $r_0$ den $y$-Wert dar, bei dem die Gerade beginnt. Die Gerade kann dann mittels der Geradengleichung $f(x) = ax + b$ berechnet werden. Hierzu werden die Randpunkte betrachtet: $r(x = 0) = r_0$ $r(x = l) = 3r_0$ Es ist schon mal ersichtlich, dass die Gerade bei $r(0) = r_0$ beginnt. ...
  2. Querdehnungen
    Stabbeanspruchungen > Verformungen quer zur Stabachse > Querdehnungen
    ... richtig zu beschreiben, empfiehlt es sich ein Koordinatensystem mit drei Dimensionen in den Stab zu legen. Ferner sollten sowohl die Stabachse, als auch die $x$-Achse eine Gerade bilden. Hieraus lassen sich dann vorab die Normalspannung $\sigma_x $ in Richtung der Zugkraft (x-Richtung) und die daraus folgende Dehnung $\epsilon_x $ bestimmen. Normalspannung und Dehnung Normalspannung und Dehnung in x-Richtung: $\sigma_x = \frac{F}{A} $ [Normalspannung] $\epsilon_x = \frac{1}{E}\cdot \sigma_x ...
  3. Schubverformungen
    Stabbeanspruchungen > Verformungen quer zur Stabachse > Schubverformungen
    ... Beziehung unabhängig von der Orientierung des Koordinatensystems ist [Elastische Isotropie]. Die Gleichung für einen Baustahl mit einer Querkontraktionszahl von $\nu = 0,3 $ hat die Form:$\ G = \frac{E}{2 \cdot ( 1 + \nu)} \rightarrow  G \approx \frac{3}{8} E \approx 0,4 E $. Daraus lässt sich ableiten, dass ein elastischer, isotroper Körper zwei unabhängige Materialkonstanten hat. Entweder $ E$ und $ G$ oder $ E$ und $\nu $. Erfüllt ein Körper nicht die Eigenschaft der Isotropie, kann ...
  4. Statisch bestimmte Stabwerke (Stabzweischlag)
    Stabbeanspruchungen > Statisch bestimmte Stabwerke > Statisch bestimmte Stabwerke (Stabzweischlag)
    Statisch bestimmte Stabwerke (Stabzweischlag)
    ... indem man die Stäbe $S_1$ und $S_2$ in ein Koordinatensystem legt und dupliziert (und dabei dreht). Man wird dann erkennen, dass die gestrichelte grüne Linie den Stab $S_1$ widerspiegelt und die schräge Linie (dick schwarz) den Stab $S_2$. Aus der Aufgabenstellung ist bekannt, dass diese einen Abstand vom Winkel $\alpha$ besitzen. In der obigen Grafik sind die Stäbe $S_1$ und $S_1$ solange gedreht worden, bis das gedrehte $S_2$ (gestrichelte Linie) im rechten Winkel zu dem ursprünglichen ...
  5. Ebener Spannungszustand: Koordinatentransformation
    Mehrachsige Spannungszustände > Ebener Spannungszustand > Ebener Spannungszustand: Koordinatentransformation
    Ebener Spannungszustand: Koordinatentransformation
    ... des Schnittwinkels und die Drehung des ebenen Koordinatensystems [x,y] um einen Winkel $\alpha $ auf die Spannungskomponenten haben.  Drehung des Koordinatensystems Dazu wird als erstes die folgende Scheibe und die dazugehörigen Spannungen in der $x$-$y$-Ebene betrachtet: Die resultierende Spannungsmatrix ist:  $\sigma = \begin{bmatrix} \sigma_{x} & \tau_{xy} \\ \tau_{xy} & \sigma_{y} \end{bmatrix} $  Es wird nun der Einfluss der Drehung des Koordinatensystems [x,y] um den ...
  6. Beispiel 1: Koordinatentransformation
    Mehrachsige Spannungszustände > Ebener Spannungszustand > Beispiel 1: Koordinatentransformation
    Beispiel 1: Koordinatentransformation
    ... Schnitt. Dort wurde der Winkel zur Drehung des Koordinatensystems vorgegeben und dann der Schnitt durchgeführt (senkrecht zum Normalenvektor und damit zur Normalspannung, der auf der neuen Achse $x^*$ liegt). In diesem Beispiel hingegen wird der Winkel für den Schnitt vorgegeben und der Winkel für die Drehung ist noch zu ermitteln. Folgende Grafik zeigt den Schnitt im 65°-Winkel zur $x$-Achse: Die Normalspannung $\sigma_x^*$ steht senkrecht auf der Querschnittsfläche. Als nächstes muss ...
  7. Beispiel 2: Koordinatentransformation
    Mehrachsige Spannungszustände > Ebener Spannungszustand > Beispiel 2: Koordinatentransformation
    Beispiel 2: Koordinatentransformation
    ... von 135° zur x-Achse liegt das neue $x^*, y^*$-Koordinatensystem im Gegensatz zum $x,y$-Koordinatensystem um 45° im Uhrzeigersinn gedreht vor. Da IM Uhrzeigersinn gedreht wird, ist $\alpha = -45°$. Die Formeln aus dem vorherigen Abschnitt gelten für positives $\alpha$, wenn GEGEN den Uhrzeigersinn gedreht wird und entsprechend muss $\alpha = -45°$ hier negativ berücksichtigt werden. Dreht man nun die Scheibe mit den in positive Richtung zeigenden Spannungen ebenfalls um 45° mit dem Uhrzeigersinn, ...
  8. Extremwerte der Normalspannungen (Hauptnormalspannungen)
    Mehrachsige Spannungszustände > Hauptspannungen > Extremwerte der Normalspannungen (Hauptnormalspannungen)
    Extremwerte der Normalspannungen (Hauptnormalspannungen)
    ... Hauptrichtung, also die Drehung des Ausgangskoordinatensystems um einen bestimmten Winkel, so dass die Hauptnormalspannungen auftreten, erfolgt durch: $\tan (2 \alpha^*) = \frac{2 \tau_{xy}}{\sigma_x - \sigma_{y}}$     Um den Winkel $\alpha^*$ zu berechnen muss die Gleichung nach $\alpha^*$ aufgelöst werden: $2 \alpha^*) = \tan^{-1}(\frac{2 \tau_{xy}}{\sigma_x - \sigma_{y}})$     Nicht vergessen den resultierenden Winkel noch durch $2$ zu teilen. Resultiert ein positiver Winkel, ...
  9. Extremwerte der Schubspannungen (Hauptschubspannungen)
    Mehrachsige Spannungszustände > Hauptspannungen > Extremwerte der Schubspannungen (Hauptschubspannungen)
    ... der Winkel also um welchen das Ausgangskoordinatensystem gedreht werden muss, damit die Hauptschubspannung auftritt, wird bestimmt zu: $\frac{1}{\tan (2\alpha^{**})} = - \frac{2\tau_{xy}}{(\sigma_x - \sigma_y)}$ Um den Winkel zu bestimmen, muss die Gleichung nach $\alpha^{**}$ aufgelöst werden: $2 \alpha^{**} = \tan^{-1} ( - \frac{(\sigma_x - \sigma_y)}{2\tau_{xy}})$ Nicht vergessen den resultierenden Winkel noch durch $2$ zu teilen. Resultiert ein positiver Winkel, so erfolgt ...
  10. Formelsammlung Koordinatentransformation und Schnittwinkeländerung
    Mehrachsige Spannungszustände > Hauptspannungen > Formelsammlung Koordinatentransformation und Schnittwinkeländerung
    ... Winkel bestimmt, um welchen sich das Ausgangskoordinatensystem drehen muss (Linksdrehung), damit die Schubspannungen ihre Extremwerte annehmen: $\tan (2\alpha^{**}) = - \frac{\sigma_x - \sigma_y}{(2 \tau_{xy})}$ Alternativ kann die Berechnung des Winkels auch über die Hauptrichtungen der Hauptnormalspannungen erfolgen:  $\alpha^{**} = \alpha^* \pm \frac{\pi}{4} $ mit $\frac{\pi}{2} = 45°$ Normalspannung bei Hauptschubspannungen Liegen die Hauptschubspannungen vor, so nehmen ...
  11. Beispiel 1: Hauptspannungen
    Mehrachsige Spannungszustände > Hauptspannungen > Beispiele: Hauptspannungen > Beispiel 1: Hauptspannungen
    Beispiel 1: Hauptspannungen
    ... Schnitt. Dort wurde der Winkel zur Drehung des Koordinatensystems vorgegeben und dann der Schnitt durchgeführt (senkrecht zum Normalenvektor und damit zur Normalspannung die auf der neuen Achse $x^*$ liegt). In diesem Beispiel hingegen wird der Winkel für den Schnitt vorgegeben und der Winkel für die Drehung ist noch zu ermitteln. Folgende Grafik zeigt den Schnitt im 55°-Winkel zur $x$-Achse: Die Normalspannung $\sigma_x^*$ steht senkrecht auf der Querschnittsfläche. Als nächstes muss ...
  12. Beispiel 2: Hauptspannungen
    Mehrachsige Spannungszustände > Hauptspannungen > Beispiele: Hauptspannungen > Beispiel 2: Hauptspannungen
    Beispiel 2: Hauptspannungen
    ... von 120° zur x-Achse liegt das neue $x^*, y^*$-Koordinatensystem im Gegensatz zum $x,y$-Koordinatensystem um 30° im Uhrzeigersinn gedreht vor. Da IM Uhrzeigersinn gedreht wird, ist $\alpha = -30°$. Die Formeln aus dem vorherigen Abschnitt gelten für ein positives $\alpha$, wenn GEGEN den Uhrzeigersinn gedreht wird und entsprechend muss $\alpha = -30°$ hier negativ berücksichtigt werden. Dreht man nun die Scheibe mit den in positive Richtung zeigenden Spannungen ebenfalls um 30° mit den Uhrzeigersinn, ...
  13. Mohrscher Spannungskreis
    Dieser Text ist als Beispielinhalt frei zugänglich!
    Mehrachsige Spannungszustände > Mohrscher Spannungskreis
    Mohrscher Spannungskreis
    ... den Punkt $P´(\sigma_y | -\tau_{xy})$ in das Koordinatensystem ein. 2. Man verbindet die Punkte P und P´ miteinander. 3. Der Schnitt der Verbindungslinie (rot) mit der $\sigma$-Achse ist der Kreismittelpunkt $\sigma_m$. 4. Man zeichnet den Kreis mit dem Mittelpunkt $\sigma_m$ durch die Punkte $P$ und $P´$. Der Mohrsche Spannungskreis ist nun gezeichnet und es kann begonnen werden die Werte aus diesem abzulesen. Die Hauptspannungen liegen auf der $\sigma$-Achse, da die Schubspannungen ...
  14. Beispiel: Mohrscher Spannungskreis
    Mehrachsige Spannungszustände > Mohrscher Spannungskreis > Beispiel: Mohrscher Spannungskreis
    Beispiel: Mohrscher Spannungskreis
    ... sich also um die Linksdrehung des Ausgangskoordinatensystems um 40° zur x-Achse. Um die Normalspannungen und Schubspannung für den Winkel $\beta = 40°$ zu erhalten, muss der Winkel $2 \beta$ von der Verbindungslinie $P_1(-30/-10)$ zu $\sigma_m$ aus abgetragen werden. Im Mohrschen Spannungskreis erfolgt die Abtragung entgegen der Drehung des Koordinatensystems, also in einer Rechtsdrehung MIT dem Uhrzeigersinn: Nachdem der Winkel abgetragen wurde, wird eine Verbindungslinie mit diesem ...
  15. Transformation von Verzerrungskomponenten
    Mehrachsige Spannungszustände > Ebener Verzerrungszustand > Transformation von Verzerrungskomponenten
    ... gelten auch für eine Drehung des zugehörigen Koordinatensystems anstelle des Bauteils. 
  16. Hauptdehnungen
    Mehrachsige Spannungszustände > Ebener Verzerrungszustand > Hauptdehnungen
    Hauptdehnungen
    ... das bedeutet, dass hier ein neues $x^*y^*$-Koordinatensystem eingeführt werden kann. Man legt die $x^*$-Achse auf den Messstreifen $a$, das bedeutet die $y^*$-Achse liegt dann auf dem Messstreifen $c$ (Achsen liegen im 90° Winkel zueinander). Das $x,y$-Koordinatensystem wird also um $\alpha = 45°$ (positiv, da gegen den Uhrzeigersinn) gedreht: Bestimmung der Hauptdehnungen Die Formel zur Berechnung der Hauptdehnungen lautet: $\epsilon_{1/2} = \frac{\epsilon_x + \epsilon_y}{2} \pm \sqrt{(\frac{\epsilon_x ...
  17. Arten der Biegung
    Balkenbiegung > Arten der Biegung
    Arten der Biegung
    ... Symmetrie wird immer in Abhängigkeit vom $y,z$-Koordinatensystem des Querschnitts bestimmt. Das bedeutet, ein Querschnitt wird als asymmetrisch betrachtet, wenn die $y$- und $z$-Achse keine Symmetrieachsen des Querschnittes darstellen. Besitzt der Balken den obigen rechteckigen Querschnitt, so ist dieser symmetrisch bezüglich der $y,z$-Achsen. Beide Achsen stellen in diesem Fall Symmetrieachsen dar. Die Hauptachsen sind also gleichzeitig die $y,z$-Achsen und verlaufen durch den Schwerpunkt ...
  18. Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
    Dieser Text ist als Beispielinhalt frei zugänglich!
    Balkenbiegung > Flächenträgheitsmomente > Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
    Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
    ... ist immer auch von der Lage des zugewiesenen Koordinatensystems abhängig. Meistens fällt die Wahl auf ein Koordinatensystem dessen Ursprung auch gleichzeitig mit dem Flächenschwerpunkt $S$ der betrachteten geometrischen Figur zusammenfällt oder auf ein Koordinatensystem, bei dem zumindest eine Achse den Flächenschwerpunkt berührt. Dies birgt den Vorteil, dass das Deviationsmoment meistens null wird (dann wenn eine oder beide Achsen Symmetrieachsen darstellen). An dieser Stelle sei erwähnt, ...
  19. Beispiel zu Flächenträgheitsmomenten: Rechteck
    Balkenbiegung > Flächenträgheitsmomente > Beispiel zu Flächenträgheitsmomenten: Rechteck
    Beispiel zu Flächenträgheitsmomenten: Rechteck
    ... Flächenträgheitsmomente in Abhängigkeit vom Koordinatensystem gezeigt sind die Flächenträgheitsmomente für ein Rechteck: $I_y = \frac{ba^3}{12}$ $I_z = \frac{ab^3}{12}$ $I_{yz} = 0$ Es wird hier gezeigt, wie man diese Formeln erhält. Die Bestimmung der Flächenträgheitsmomente erfolgt mit: $I_y = \int z^2 \; dA$ $I_z = \int y^2 \; dA$ $I_{yz} = \int yz \; dA$ Begonnen wird mit $I_y$. Man wählt nun einen infinitesimal kleinen Streifen mit der Breite $dz$ aus dem Rechteck, welcher ...
  20. Flächenträgheitsmomente: Koordinatentransformation
    Balkenbiegung > Flächenträgheitsmomente > Flächenträgheitsmomente: Koordinatentransformation
    Flächenträgheitsmomente: Koordinatentransformation
    ... berechnen lassen, wenn das Ursprungskoordinatensystem um einen mathematisch positiven Winkel $\alpha $ gedreht wird. Zunächst erfolgt die Herleitung der Formeln zur Bestimmung der Flächenträgheitsmomente für das gedrehte Koordinatensystem, danach erfolgt die Zusammenfassung der Formeln und zum Schluss ein Anwendungsbeispiel. Die Koordinaten aus dem bisherigen ebenen Koordinatensystem $y, z$ werden nun in das Koordinatensystem $\xi \eta $ überführt. Die Lage der Koordinaten im ...
  21. Hauptträgheitsmomente / Hauptachsen
    Balkenbiegung > Flächenträgheitsmomente > Hauptträgheitsmomente / Hauptachsen
    Hauptträgheitsmomente / Hauptachsen
    ... eine Hauptachse. Betrachten wir ein $y,z$-Koordinatensystem, welches durch den Schwerpunkt einer Querschnittsfläche verläuft. Doppelt symmetrische Querschnitte in Bezug auf dieses Koordinatensystem sind dann Rechtecke, Quadrate oder Kreise, weil beide Achsen Symmetrieachsen darstellen. Sowohl die $y$- als auch die $z$-Achse sind Hauptachsen des Querschnitts. Einfach symmetrische Querschnitte sind u.a. ein gleichschenkliges Dreieck oder ein gleichschenkliges Trapez, weil die $z$-Achse eine ...
  22. Satz von Steiner (Parallelverschiebung der Achsen)
    Balkenbiegung > Flächenträgheitsmomente > Satz von Steiner (Parallelverschiebung der Achsen)
    Satz von Steiner (Parallelverschiebung der Achsen)
    ... Lösung der Integrale im $ y^* - z^* $ - Koordinatensystem. 2. Parallelverschiebung der Koordinatenachsen und Nutzung der Flächenträgheitsmomente, welche sich auf das Schwerpunktkoordinatensystem beziehen (Steinersche Sätze). Die Formeln für letztere können Tabellenwerken entnommen werden.  Im Folgenden wird der 2. Punkt ausführlich behandelt und die Steinerschen Sätze hergeleitet. Zum Schluss wird dies anhand eines ausführlichen Beispiels dargestellt. Angewendet werden die ...
  23. Satz von Steiner für zusammengesetzte Flächen
    Dieser Text ist als Beispielinhalt frei zugänglich!
    Balkenbiegung > Flächenträgheitsmomente > Satz von Steiner für zusammengesetzte Flächen
    Satz von Steiner für zusammengesetzte Flächen
    ... Für zwei Teilflächen, die sich auf das $y, z$-Koordinatensystem beziehen, gilt: $ A_{ges} = A_1 + A_2 $ Somit gilt auch, dass sich die Integration über die Gesamtfläche $ A_{ges}$ in zwei Integrale über die Teilflächen $ A_1 , A_2 $ aufspalten lässt.  Für das obige $y^*,z^*$-Koordinatensystem gilt dann entsprechend für zwei Flächen: $\ I_{y^*} = \int_{A_{ges}} z^{*2} \; dA_{ges} = \int_{A_1} z^{*2} \; dA_{ges} + \int_{A_2} z^{*2} \; dA_{ges} $  Das Video wird geladen ... Flächenträgheitsmomente ...
  24. Schubspannungsverteilung in dünnwandigen offenen Profilen
    Schub > Schubspannungsverteilung in dünnwandigen offenen Profilen
    Schubspannungsverteilung in dünnwandigen offenen Profilen
    ... Formel für die Parallelverschiebung des Koordinatensystems hin zum Schwerpunkt eines anderen Bereichs: $ I_{y^*} = I_{y} + z_s^{*2} \cdot A $ Für den Bereich 1 ist der Abstand $z_s$ (Abstand vom Koordinatenursprung hin zum Schwerpunkt des betrachteten Körpers): $z_s = b - \frac{h}{2}$ Der Schwerpunkt für das obige Profil liegt mittig, da es sich um ein Rechteck handelt. Der Abstand $b$ geht bis an den äußeren oberen Rand, da der Schwerpunkt aber mittig liegt muss noch die Hälfte ...
  25. Kritische Knickkraft
    Stabilität und Knickung > Eulersche Fälle der Stabknickung > Kritische Knickkraft
    Kritische Knickkraft
    ... Flächenträgheitsmomente in Abhängigkeit vom Koordinatensystem). Ist das Flächenträgheitsmoment nicht tabellarisch gegeben, muss dieses berechnet werden. Da es sich hierbei um einen kreisförmigen Querschnitt handelt, kann man $I$ aus der Tabelle ablesen: $I = \frac{\pi r^4}{4} = \frac{\pi \cdot (5mm)^4}{4} = 490,87 mm^4$ E-Modul Das E-Modul für den Werkstoff S235 (St 37) kann aus einer Tabelle abgelesen werden. Es handelt sich hierbei um Stahl mit dem E-Wert: $21 \cdot 10^4 N/mm^2$. Kritische ...
  • 108 Texte mit 216 Bildern
  • 139 Übungsaufgaben
  • und 22 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG


Technische Mechanik 1: Statik

  1. Kräftepolygon in der Ebene
    Einzelkräfte mit gemeinsamen Angriffspunkt > Kräftepolygon in der Ebene
    Kräftepolygon in der Ebene
    ... unabhängig von einer bestimmten Wahl des Koordinatensystems. Parallelogrammkonstruktion Diese geometrische Konstruktion entspricht einer grafischen Vektoraddition. Hierbei werden die auf den Körper wirkenden Kräfte in einer beliebigen Reihenfolge aneinander gereiht. Die Resultierende ergibt sich dann aus dem Anfangspunkt des Anfangsvektors und dem Endpunkt des Endvektors.  Grafische Vektoraddition Die grafische Vektoraddition von Kräften wird auch Kräftepolygon genannt. ...
  2. Kräftegleichgewicht bei mehr als zwei Kräften
    Einzelkräfte mit gemeinsamen Angriffspunkt > Kräftegleichgewicht in der Ebene > Kräftegleichgewicht bei mehr als zwei Kräften
    Kräftegleichgewicht bei mehr als zwei Kräften
    ... für $F_1$ erfolgt dabei im 1. Quadranten des Koordinatensystems mit: $F_{1x} = F_1 \cdot \cos(30°)$      zeigt in positive $x$-Richtung $F_{1y} = F_1 \cdot \sin (30°)$      zeigt in positive $y$-Richtung Die Kräftezerlegung für $F_2$ erfolgt im 2. Quadranten: $F_{2x} = F_2 \cdot \cos(30°)$      zeigt in negative $x$-Richtung $F_{2y} = F_2 \cdot \sin (30°)$      zeigt in positive $y$-Richtung Video: Kräftezerlegung Das Video wird geladen ... Es können nun die beiden ...
  3. Bestimmung von Momenten
    Einzelkräfte mit verschiedenen Angriffspunkten > Ebenes Kräftesystem > Bestimmung von Momenten
    Bestimmung von Momenten
    ... addieren. Dazu stellt man sich $F_1$ in einem Koordinatensystem vor. Die Kraft $F_1$ würde im 4. Quadraten liegen. Die Berechnung erfolgt: $R_x = F_1 \cos (45) = F_1 \cdot 0,71$.     ($R_x$ zeigt zur positiven x-Achse) $R_y = F_1 \sin (45) = F_1 \cdot 0,71$.     ($R_y$ zeigt zur negativen y-Achse) Die Momentenberechnung erfolgt nun so, dass man ausgehend von der Lage von $F_1$ die Resultierende $R_x$ solange parallel zu sich selbst nach unten verschiebt bis diese den Bezugspunkt schneidet. ...
  4. Resultierende ebener Kräftegruppen
    Einzelkräfte mit verschiedenen Angriffspunkten > Ebenes Kräftesystem > Resultierende ebener Kräftegruppen
    Resultierende ebener Kräftegruppen
    ... den Betrag von 20 N. Für den Ursprung des Koordinatensystems soll der Bezugspunkt $A$ (genau die Mitte des Sechsecks) gewählt werden. Wie groß ist die Resultierende und wo befindet sich ihre Lage?  Zuerst sollte man wissen, wie sich in einem gleichseitigen Sechseck die Winkel verhalten: gleichseitiges Sechseck Man kann ein gleichseitiges Sechseck in 6 gleichschenklige Dreiecke unterteilen. Die Spitzen der Dreiecke (in der Mitte) müssen zusammen 360° ergeben. Das Dreieck selber ...
  5. Gleichgewichtsbedingungen ebener Kräftesysteme
    Einzelkräfte mit verschiedenen Angriffspunkten > Ebenes Kräftesystem > Gleichgewichtsbedingungen ebener Kräftesysteme
    Gleichgewichtsbedingungen ebener Kräftesysteme
    ... Freikörperbild Als nächstes wird das Koordinatensystem zur Bestimmung der Kräfte eingezeichnet. Es wird hier der Bezugspunkt $C$ (siehe Ausgangsgrafik) gewählt und die Kräfte parallel zu sich selbst bis zu diesem Punkt verschoben. Unter Berücksichtigung der Winkel ergbit sich folgende Skizze: Die Gleichgewichtsbedingung in $x$-Richtung lautet: $\rightarrow : W_1 \cos (0°) + S \cos (120°) + W_2 \cos (180°) + G \cos (270°) = 0$ verkürzt: $W_1 + S \cos (120°) - W_2 = 0$Die ...
  6. Räumliche Zusammensetzung von Kräften
    Einzelkräfte mit verschiedenen Angriffspunkten > Räumliches Kräftesystem > Räumliche Zusammensetzung von Kräften
    Räumliche Zusammensetzung von Kräften
    ... Dazu benötigt man das Einzeichnen des Koordinatensystems. Der Bezugspunkt $X$ ist dabei der Koordinatenursprung. Die Kräfte werden solange parallel zu sich selbst verschoben, bis diese die Wirkungslinie des Bezugspunktes $X$ schneiden.  Kräfte im Raum - Koordinatensystem Berechnung der Teilresultierenden $R_x = \sum{F_{ix}}  = F_1 \cdot \cos (180°) + F_3 \cdot \cos (180°) $           (alle anderen fallen weg) $= -F_1 - F_3 = -5 - 10 = -15 N$    $R_y = F_5 + F_6 ...
  7. Flächenschwerpunkte
    Dieser Text ist als Beispielinhalt frei zugänglich!
    Schwerpunkte > Flächenschwerpunkte
    Flächenschwerpunkte
    ... der Teilflächen eintragen 3. Bezugskoordinatensystem festlegen. Das Bezugskoordinatensystem kann beliebig gewählt werden. Die Abmessungen vom Ursprung des Bezugskoordinatensystems zu den Schwerpunkten müssen gegeben sein. 4. Abstände in $x$ und $y$-Richtung bestimmen (sofern $x,y$-Koordinatensystem zugrunde liegt). Dabei auf negative und positive Abstände achten. Ausgehend vom Bezugskoordinatensystem wird der Abstand positiv gewählt, wenn man sich zum Schwerpunkt der Einzelfläche ...
  8. Statische Bestimmtheit räumlicher Tragwerke
    Lagerreaktionen > Statische Bestimmtheit räumlicher Tragwerke
    Statische Bestimmtheit räumlicher Tragwerke
    ... In der obigen Grafik ist das $x,y,z$-Koordinatensystem eingeführt worden und die Lagerkräfte sowie die Abmessungen eingezeichnet worden. Das Lager $A$ überträgt nur Kräfte senkrecht zur Kurbel, d.h. keine Kraft in $x$-Richtung (da dies eine parallele Kraft zur Kurbel darstellen würde). Das Lager $B$ hingegen überträgt Kräfte in alle drei Raumrichtungen. Die Richtungen der Lagerkräfte werden zunächst so wie eingezeichnet angenommen. Resultieren am Ende positive Werte, so sind ...
  9. Schnittmethode und Schnittgrößen
    Schnittmethode und Schnittgrößen
    Schnittmethode und Schnittgrößen
    ... in positive Richtung. Dabei muss das obige Koordinatensystem berücksichtigt werden. Die Normalkraft $N$ zeigt in positive $x$-Richtung, die Querkraft $Q$ in positive $z$-Richtung und das Biegemoment besitzt einen positiven Drehsinn (Linksdrehung). Es liegt dann also eine Drehung um die $y$-Achse entgegen des Uhrzeigersinns vor. Zeigt der Normalenvektor $n$ eines Schnittufers in die negative $x$-Richtung, so spricht man entsprechend von einem negativen Schnittufer. In diesem Fall zeigen alle ...
  10. Schnittgrößen: Einzelkräfte am Balken
    Dieser Text ist als Beispielinhalt frei zugänglich!
    Schnittmethode und Schnittgrößen > Schnittgrößen linienförmiger Tragwerke > Schnittgrößen am Balken > Schnittgrößen: Einzelkräfte am Balken
    Schnittgrößen: Einzelkräfte am Balken
    ... folgende Vorgehensweise: 1. Festlegung des Koordinatensystems, sofern dies nicht bereits vorgegeben ist. 2. Bestimmung der Auflagerreaktionen [Lager] am gesamten Balken. Hier erfolgt die Betrachtung am "noch ungeschnittenen" Balken unter Berücksichtigung aller von außen wirkenden Kräfte. 3. Zerlegung des Balkens in Bereiche, in denen ein Belastungswechsel durch äußere Kräfte und Momente auftritt. 4. Einzeichnen aller Schnittgrößen am positiven (linken) und/oder negativen (rechten) ...
  11. Schnittgrößen am Bogen
    Schnittmethode und Schnittgrößen > Schnittgrößen linienförmiger Tragwerke > Schnittgrößen am Bogen
    Schnittgrößen am Bogen
    ... wirkt in Richtung der negativen $y$-Achse. Das Koordinatensystem mit eingezeichneter Querkraft und Normalkraft, sowie den Lagerkräften $A_h$ und $A_v$, sieht wie folgt aus: Schnittgrößen am Bogen: Koordinatensystem Der Winkel von 35° wurde übernommen. Die gestrichelten Linien (Hilfslinien) bilden einen 90° Winkel. Die Querkraft und Normalkraft bilden auch einen 90° Winkel, da die Normalkraft auf der positiven $x$-Achse liegt und die Querkraft auf der negativen $y$-Achse. Die Gleichgewichtsbedingungen ...
  12. Schnittgrößen an räumlichen Tragwerken
    Schnittmethode und Schnittgrößen > Schnittgrößen an räumlichen Tragwerken
    ... so sollte jedes Teilstück mit einem eigenen Koordinatensystem versehen werden.   
  13. Haftreibung
    Reibung und Haftung > Haftreibung
    Haftreibung
    ... In der rechten Grafik ist das Koordinatensystem eingezeichnet mit dem Winkel $\alpha$. $H$ und $F$ befinden sich beide auf der $x$-Achse nur entgegengesetzt mit dem Winkel $\alpha$ zur Hilfslinie (gestrichelte Linie). $N$ zeigt in Richtung der positiven $y$-Achse. Mithilfe der Gleichgewichtsbedingungen können jetzt die fehlenden Größen ermittelt werden. Die Berechnung der Winkel erfolgt hier immer zur positiven $x$-Achse hin: Pfeil nach links oben ($y$-Achse): $N + G \cdot ...
  • 72 Texte mit 242 Bildern
  • 123 Übungsaufgaben
  • und 28 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG


Strömungslehre

  1. Druckkräfte auf gekrümmte Flächen
    Hydrostatik > Druckkräfte auf gekrümmte Flächen
    Druckkräfte auf gekrümmte Flächen
    ... 0$. Der Schwerpunkt liegt also (wenn man das Koordinatensystem in den Mittelpunkt legt) bei: $x_s = \frac{4 \cdot 3m}{3 \cdot \pi} = 1,27 m$. Da auch die Vertikalkraft bei gekrümmten Flächen durch den Druckmittelpunkt verläuft, hat man hier die Koordinate für diesen in $x$-Richtung gegeben.  Bestimmung der Resultierenden Der Betrag der Resultierenden berechnet sich zu: $F_R = \sqrt{F_H^2 + F_V^2} = \sqrt{(176.574,70 N)^2 + (138.709,24 N)^2} = 224.541,48 N$. Die Wirkungslinie ...
  2. Geschichtete Fluide
    Hydrostatik > Geschichtete Fluide
    Geschichtete Fluide
    ... die Fläche des Lukendeckels ein $\eta$,$\xi$-Koordinatensystem ein und berechnet den Abstand auf der $\eta$-Achse vom Schwerpunkt zum Druckmittelpunkt aus: $\eta_D = \frac{I_{\xi}}{\eta_S \cdot A}$. Das Flächenträgheitsmoment bezüglich der $\xi$-Achse für ein Rechteck beträgt: $I_{\xi} = \frac{6^3 \cdot 2}{12}$. Die Schwerpunktlage des Lukendeckels (mittig) in Richtung der $\eta$-Achse beträgt: $\eta_S = 3m$. Die Fläche des Lukendeckels beträgt: $A = 12m^2$. Insgesamt ergibt ...
  3. Stationäre und instationäre Strömungen
    Kinematik einer Strömung > Stationäre und instationäre Strömungen
    ... Beschreibung des Strömungsfeldes verwendeten Koordinatensystems, sondern auch von der Zeit abhängig sind. Es wird zwischen drei Arten von instationären Strömungsvorgängen unterschieden.  Arten von instationären Strömungen: Stochastisch unregelmäßige Vorgänge wie bei turbulenten Schwankungen. Anlauf- oder Auslaufvorgänge wie beim Anfahren oder Abschalten einer Kreiselpumpe.  Periodische Vorgänge wie bei Pulsationen, z. B. bei Druckstößen in Rohrleitungen, bei Kreiselpumpen ...
  4. Lagrange- / Euler-Darstellung
    Kinematik einer Strömung > Lagrange- / Euler-Darstellung
    Lagrange- / Euler-Darstellung
    ... stellvertretend für alle – bezüglich eines Koordinatensystems analytisch beschrieben. Die sich dadurch ergebenden LAGRANGEschen Bewegungsgleichungen sind oft sehr kompliziert und erfordern deshalb erheblichen mathematischen Aufwand. Aus diesem Grunde wird die LAGRANGEsche Betrachtungsweise nur in Sonderfällen angewendet. Gegeben sei der Ortsvektor $r_0$ eines Fluidteilchens zur Zeit $t = t_0$. Zur Zeit $t$ ist der Ortsvektor dann $\vec{r} = [x(x_0, y_0, z_0, t], \; y(x_0, y_0, z_0, t), ...
  5. Vertikale und horizontale Gleichgewichtsbedingung
    Impulssatz und Drallsatz > Impulssatz > Vertikale und horizontale Gleichgewichtsbedingung
    Vertikale und horizontale Gleichgewichtsbedingung
    ... $F_{A, V}$. Da die Kraft $F_A$ in einem Koordinatensystem im 3. Quadranten liegt, zeigt die Horizontalkomponente in negative $x$-Richtung und die Vertikalkomponente in negative $y$-Richtung: In der folgenden Grafik ist das Ganze veranschaulicht: In der obigen Grafik ist nun die Auflagerkraft $F_A$ in zwei Komponenten zerlegt worden. Und zwar in eine Vertikalkomponente $F_{A,V}$ und in eine Horizontalkomponente $F_{A,H}$. Diese beiden Komponenten gehen stellvertretend für die Auflagerkraft ...
  • 61 Texte mit 135 Bildern
  • 92 Übungsaufgaben
  • und 10 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG


Analysis und Gewöhnliche Differentialgleichungen

  1. Parameterdarstellung
    Darstellungsarten ebener Kurven > Parameterdarstellung
    Parameterdarstellung
    ... beliebige Kurven $K$ in einem kartesischen Koordinatensystem als Funktionsgraphen darzustellen. Bei einer Funktion existiert zu jedem $x$-Wert nur ein $y$-Wert, weshalb beispielsweise die Darstellung eines Vollkreises nicht möglich ist (ein $x$-Wert dem zwei $y$-Werte zugeordnet werden). Auch bei einer Kurve kann es vorkommen, dass z.B. durch eine Schlaufe einem $x$-Wert zwei $y$-Werte zugewiesen sind (wie beim Kreis). Parameterdarstellung Abhilfe schafft hier die Einführung eines Parameters ...
  2. Funktionen mehrerer Veränderlicher
    Funktionen mehrerer Veränderlicher
    Funktionen mehrerer Veränderlicher
    ... Funktionen mit einer Variablen $x$ in einem Koordinatensystem dargestellt, indem die Variable $x$-Wert auf der Abszisse ($x$-Achse) und der dazugehörige $y$-Wert auf der Ordinate ($y$-Achse) abgetragen wurde. Bei Funktionen mit mehreren Veränderlichen funktioniert dies nicht mehr so einfach, denn es existieren mindestens zwei Variablen. Bei Funktionen mit zwei Variablen kann man die dreidimensionale Ansicht wählen, um die Funktion darzustellen.  Es sei die Funktion: $z = f(x, y) = x + ...
  3. Richtungsfeld und Isoklinen
    Gewöhnliche Differentialgleichungen > Richtungsfeld und Isoklinen
    Richtungsfeld und Isoklinen
    ... y' (x) = F(x,y(x)), $ so lässt sich in einem Koordinatensystem ein Richtungsfeld erzeugen. Dieses Richtungsfeld besteht aus Punkten $ (x,y) $ denen in der Ebene ein Vektor mit der Steigung $ F(x,y) $ zugeordnet wird. Jeder dieser Vektoren gibt an, welche Richtung der Graphen der Differentialgleichung hätte, sofern dieser durch den jeweiligen Punkt $ (x,y) $ verliefe. Zusammenfassend lässt sich sagen, dass sich ein Richtungsfeld sich aus all den Punkten (inkl. Vektoren) erzeugen lässt, die ...
  • 54 Texte mit 36 Bildern
  • 79 Übungsaufgaben
  • und 12 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG


Werkstofftechnik 1

  1. Bestimmung von Gitterrichtungen
    Aufbau fester Phasen > Kristallsysteme > Gittereigenschaften > Bestimmung von Gitterrichtungen
    ... Gittergeraden verwendet man Vektoren, welche im Koordinatensystem vom Ursprung bis hin zum Schwerpunkt des betrachteten Atoms zeigen. Für die Gittergeraden verwendet man als Koordinaten ganze Zahlen, dh. man bezeichnet sie als teilerfremde Koordinaten. Um die Berechnung der Gitterrichtungen besser zu verstehen, folgt eine Veranschaulichung am orthorhombischen Gitter.  Gitterrichtungen im orthorhombischen Gitter Zur Erinnerung die Geometrie des Orthorhombischen Gitters ist beschrieben durch:$\ ...
  2. Miller'sche Indizes, Bestimmung von Gitterebenen
    Dieser Text ist als Beispielinhalt frei zugänglich!
    Aufbau fester Phasen > Kristallsysteme > Gittereigenschaften > Miller'sche Indizes, Bestimmung von Gitterebenen
    Miller
    ... Indizes h,k,l. Hierzu legt man ein räumliches Koordinatensystem in das Gitter und setzt die Bereiche, die die Ebene von den Achsen abschneidet, zueinander ins Verhältnis. Die Achsenabschnitte werden hierbei nicht wie üblich in Längenmaßen wie cm oder nm beschrieben, sondern durch Gitterparameter. Dies hat zur Folge, dass beispielsweise im rhombischen Gittersystem der Wert 4 auf jeder Achse eine andere Länge besitzt.  Es ist zudem besonders wichtig den Achsenursprung nicht in die zu indizierenden ...
  • 85 Texte mit 95 Bildern
  • 215 Übungsaufgaben
  • und 19 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG


Physik

  1. Kräftezerlegung
    Kinetik: Ursache von Bewegungen > Kräftezerlegung
    Kräftezerlegung
    Im vorherigen Abschnitt haben wir den Fall gezeigt, wenn mehrere Kräfte auf einen Körper wirken. Diese können alle zusammen zu einer einzigen Kraft zusammengefasst werden, der Resultierenden $R$. Für das Newtonsche Grundgesetz $\sum F = ma$ ist es sinnvoll die Betrachtung der Bewegung in $x$- und $y$-Richtung zu zerlegen. Die $x$-Achse zeigt immer in Richtung der Bewegung, die $y$-Achse steht senkrecht auf der $x$-Achse. $R_x = ma_x$ $R_y = ma_y$ Es gilt $R_x = \sum F_x$ und $R_y = \sum ...
  • 127 Texte mit 255 Bildern
  • 227 Übungsaufgaben
  • und 5 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG