Analysis und Lineare Algebra

  1. Uneigentliche Integrale
    Integralrechnung > Uneigentliche Integrale
    Uneigentliche Integrale
    Uneigentliche Integrale unterscheiden sich von anderen Integralen dadurch, dass der Integrand $\ f(x)$ nur teilweise stetig und folglich beschränkt ist.  Sie werden als Grenzwerte von bestimmten Integralen definiert und auf gleiche Weise zur Flächenberechnung benutzt. Jedoch erstrecken sich diese Flächen ins Unendliche und besitzen demnach auch keinen endlichen Flächeninhalt.  Uneigentliche Integrale Wie man in der obigen Grafik erkennt, nähert sich die $\color{blue}{Kurve}$ der ...
  2. Uneigentliche Integrale Typ 2
    Integralrechnung > Uneigentliche Integrale > Uneigentliche Integrale Typ 2
    Uneigentliche Integrale Typ 2
    ... an dieser Polstelle  $x = p$  erneut in 2 uneigentliche Integrale aufgespalten werden. Hierbei ist  $x = p$  für das eine Integral die obere und für das andere Integral die untere Grenze. Auch hier gilt: Liefert das Ergebnis, dass beide uneigentlichen Teilintegrale einen endlichen Wert besitzen, so existiert auch das Gesamtintervall. 
  • 112 Texte mit 81 Bildern
  • 200 Übungsaufgaben
  • und 23 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG