Technische Mechanik 2: Elastostatik

  1. Sonderfälle des ebenen Spannungszustandes
    Mehrachsige Spannungszustände > Ebener Spannungszustand > Sonderfälle des ebenen Spannungszustandes
    ESZ Sonderflle Zug/Druck
    ... Erläuterung der Grafik siehe Abschnitt Koordinatentransformation und Schnittwinkeländerung):Die Gleichgewichtsbedingungen unter Berücksichtigung vonführt zu:$\nearrow: \sigma_{x^*} dA - \sigma_x \cos (\alpha) \cdot dA \cos (\alpha) = 0$$\sigma_{x^*} = \sigma_x \cos^2 (\alpha)$Anwendung von $2 \cos^2 (\alpha) = 1 + \cos (2 \alpha)$$\sigma_{x^*} = \frac{1}{2} \sigma_x + \frac{1}{2} \sigma_x  \cos (2 \alpha) $$\nwarrow : \tau_{x^*y^*} dA + \sigma_x \sin (\alpha) ...
  2. Beispiel: Widerstandsmoment, zulässige Spannung
    Balkenbiegung > Gerade bzw. einachsige Biegung > Beispiele: Normalspannungen bei einachsiger Balkenbiegung > Beispiel: Widerstandsmoment, zulässige Spannung
    Flchentrgheitsmoment dnnwandiges Quadrat
    ... zweite Summand ist der Abstand $z^2$ von dem Koordinatenursprung hin zum Schwerpunkt des betrachteten Rechtecks und das multipliziert mit der Fläche des Rechtecks.Das Ganze muss nun aufgelöst werden:$I_{y} =  \frac{1}{12} b^3 \frac{(a-2b)}{2} +( \frac{a - 2b}{2} + \frac{b}{2})^2 \cdot \frac{a - 2b}{2} \cdot b$$= \frac{b^3a}{24} - \frac{b^4}{12} + \frac{1}{4} (a - b)^2 \cdot \frac{ab}{2} - \frac{2b^2}{2}$$= \frac{b^3a}{24} - \frac{b^4}{12} + \frac{1}{4} (a^2 - 2ab ...
  3. Transformation von Verzerrungskomponenten
    Mehrachsige Spannungszustände > Ebener Verzerrungszustand > Transformation von Verzerrungskomponenten
    ... (siehe Kapitel Ebener Spannungszustand: Koordinatentransformation). Denn es gelten identische Transformationsregeln und Zusammenhänge, weil die Verzerrungen ebenfalls Tensorkomponenten sind. Man ersetzt $\sigma_x$, $\sigma_y$ und $\tau_{xy}$ durch $\epsilon_x$, $\epsilon_y$ und $\gamma_{xy}$.Dehnungen und Gleitungen - FormelnDie Drehung des Bauteils unter einem bestimmten Winkel $\alpha$ ergibt die Dehnungen und Gleitungen:$\epsilon_x^* = \frac{\epsilon_x + \epsilon_y}{2} + \frac{\epsilon_x ...
  4. Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
    Dieser Text ist als Beispielinhalt frei zugänglich!
    Balkenbiegung > Flächenträgheitsmomente > Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
    Flchentrgheitsmomente Rechteck
    ... immer auch von der Lage des zugewiesenen Koordinatensystems abhängig. Meistens fällt die Wahl auf ein Koordinatensystem dessen Ursprung auch gleichzeitig mit dem Flächenschwerpunkt $S$ der betrachteten geometrischen Figur zusammenfällt oder auf ein Koordinatensystem, bei dem zumindest eine Achse den Flächenschwerpunkt berührt. Dies birgt den Vorteil, dass das Deviationsmoment meistens null wird (dann wenn eine oder beide Achsen Symmetrieachsen darstellen). ...
  5. Beispiel zu Spannungen im Stab: Konischer Stab
    Stabbeanspruchungen > Spannungen im Stab > Beispiel zu Spannungen im Stab: Konischer Stab
    Spannungen im Stab konischer Stab
    ... indem man sich diese rote Gerade in einem Koordinatensystem vorstellt. Hierbei wird nur der obere Teil des konischen Stabes betrachtet, weil der Radius und nicht der Durchmesser betrachtet wird:Dabei stellt $r_0$ den $y$-Wert dar, bei dem die Gerade beginnt. Die Gerade kann dann mittels der Geradengleichung $f(x) = ax + b$ berechnet werden. Hierzu werden die Randpunkte betrachtet:$r(x = 0) = r_0$$r(x = l) = 3r_0$Es ist schon mal ersichtlich, dass die Gerade bei $r(0) = r_0$ beginnt. Das bedeutet ...
  6. Statisch bestimmte Stabwerke (Stabzweischlag)
    Stabbeanspruchungen > Statisch bestimmte Stabwerke > Statisch bestimmte Stabwerke (Stabzweischlag)
    Stabzweischlag
    ... indem man die Stäbe $S_1$ und $S_2$ in ein Koordinatensystem legt und dupliziert (und dabei dreht). Man wird dann erkennen, dass die gestrichelte grüne Linie den Stab $S_1$ widerspiegelt und die schräge Linie (dick schwarz) den Stab $S_2$. Aus der Aufgabenstellung ist bekannt, dass diese einen Abstand vom Winkel $\alpha$ besitzen.In der obigen Grafik sind die Stäbe $S_1$ und $S_1$ solange gedreht worden, bis das gedrehte $S_2$ (gestrichelte Linie) im rechten Winkel zu dem ursprünglichen ...
  7. Ebener Spannungszustand: Koordinatentransformation
    Mehrachsige Spannungszustände > Ebener Spannungszustand > Ebener Spannungszustand: Koordinatentransformation
    EBZ Transformation Scheibe
    ... des Schnittwinkels und die Drehung des ebenen Koordinatensystems [x,y] um einen Winkel $\alpha $ auf die Spannungskomponenten haben. Drehung des KoordinatensystemsDazu wird als erstes die folgende Scheibe und die dazugehörigen Spannungen in der $x$-$y$-Ebene betrachtet:Die resultierende Spannungsmatrix ist: $\sigma = \begin{bmatrix} \sigma_{x} & \tau_{xy} \\ \tau_{xy} & \sigma_{y} \end{bmatrix} $ Es wird nun der Einfluss der Drehung des Koordinatensystems [x,y] ...
  8. Querdehnungen
    Stabbeanspruchungen > Verformungen quer zur Stabachse > Querdehnungen
    ... richtig zu beschreiben, empfiehlt es sich ein Koordinatensystem mit drei Dimensionen in den Stab zu legen. Ferner sollten sowohl die Stabachse, als auch die $x$-Achse eine Gerade bilden. Hieraus lassen sich dann vorab die Normalspannung $\sigma_x $ in Richtung der Zugkraft (x-Richtung) und die daraus folgende Dehnung $\epsilon_x $ bestimmen.Normalspannung und DehnungNormalspannung und Dehnung in x-Richtung:$\sigma_x = \frac{F}{A} $ [Normalspannung]$\epsilon_x = \frac{1}{E}\cdot \sigma_x $ [Dehnung] ...
  9. Hauptdehnungen
    Mehrachsige Spannungszustände > Ebener Verzerrungszustand > Hauptdehnungen
    Hauptdehnungen DMS Beispiel
    ... das bedeutet, dass hier ein neues $x^*y^*$-Koordinatensystem eingeführt werden kann. Man legt die $x^*$-Achse auf den Messstreifen $a$, das bedeutet die $y^*$-Achse liegt dann auf dem Messstreifen $c$ (Achsen liegen im 90° Winkel zueinander). Das $x,y$-Koordinatensystem wird also um $\alpha = 45°$ (positiv, da gegen den Uhrzeigersinn) gedreht:Bestimmung der HauptdehnungenDie Formel zur Berechnung der Hauptdehnungen lautet:$\epsilon_{1/2} = \frac{\epsilon_x + \epsilon_y}{2} \pm ...
  10. Schubverformungen
    Stabbeanspruchungen > Verformungen quer zur Stabachse > Schubverformungen
    ... unabhängig von der Orientierung des Koordinatensystems ist [Elastische Isotropie].Die Gleichung für einen Baustahl mit einer Querkontraktionszahl von $\nu = 0,3 $ hat die Form:$\ G = \frac{E}{2 \cdot ( 1 + \nu)} \rightarrow  G \approx \frac{3}{8} E \approx 0,4 E $.Daraus lässt sich ableiten, dass ein elastischer, isotroper Körper zwei unabhängige Materialkonstanten hat. Entweder $ E$ und $ G$ oder $ E$ und $\nu $. Erfüllt ein Körper nicht die Eigenschaft ...
  11. Kritische Knickkraft
    Stabilität und Knickung > Eulersche Fälle der Stabknickung > Kritische Knickkraft
    Beispiel Stabknickung
    ... in Abhängigkeit vom Koordinatensystem). Ist das Flächenträgheitsmoment nicht tabellarisch gegeben, muss dieses berechnet werden.Da es sich hierbei um einen kreisförmigen Querschnitt handelt, kann man $I$ aus der Tabelle ablesen:$I = \frac{\pi r^4}{4} = \frac{\pi \cdot (5mm)^4}{4} = 490,87 mm^4$E-ModulDas E-Modul für den Werkstoff S235 (St 37) kann aus einer Tabelle abgelesen werden. Es handelt sich hierbei um Stahl mit dem E-Wert: $21 \cdot 10^4 N/mm^2$.Kritische ...
  12. Beispiel zu Flächenträgheitsmomenten: Rechteck
    Balkenbiegung > Flächenträgheitsmomente > Beispiel zu Flächenträgheitsmomenten: Rechteck
    Hauptrgheitsmomente Rechteck
    ... in Abhängigkeit vom Koordinatensystem gezeigt sind die Flächenträgheitsmomente für ein Rechteck:$I_y = \frac{ba^3}{12}$$I_z = \frac{ab^3}{12}$$I_{yz} = 0$Es wird hier gezeigt, wie man diese Formeln erhält.Die Bestimmung der Flächenträgheitsmomente erfolgt mit:$I_y = \int z^2 \; dA$$I_z = \int y^2 \; dA$$I_{yz} = \int yz \; dA$Begonnen wird mit $I_y$. Man wählt nun einen infinitesimal kleinen Streifen mit der Breite $dz$ aus dem ...
  13. Beispiel 2: Hauptspannungen
    Mehrachsige Spannungszustände > Hauptspannungen > Beispiele: Hauptspannungen > Beispiel 2: Hauptspannungen
    Hauptspannungen Beispiel
    ... die Formeln aus dem vorherigen Abschnitt zur Koordinatentransformation so nicht angewandt werden können, um die Normal- und Schubspannungen für einen anderen Schnitt (hier 3-3) zu bestimmen, denn hier müsste auch $\sigma_x$ gegeben sein.Nicht vergessen: Die Schubspannungen, welche ein vertauschtes Indexpaar besitzen sind identisch, also $\tau_{yx} = \tau_{xy}$.Es ist aber zusätzlich noch der Schnitt 2-2 gegeben:Der Schnitt 2-2 ist im 120°-Winkel zur x-Achse gegeben. ...
  14. Formelsammlung Koordinatentransformation und Schnittwinkeländerung
    Mehrachsige Spannungszustände > Hauptspannungen > Formelsammlung Koordinatentransformation und Schnittwinkeländerung
    ... ermittelten Gleichungen für die Koordinatentransformation und Schnittwinkeländerung zusammengefasst.Hauptnormalspannung (Extremwerte der Normalspannung)$ \sigma_{1,2} = \frac{(\sigma_x + \sigma_y)}{2} \pm \sqrt{(\frac{\sigma_x - \sigma_y}{2})^2 +\tau^2_{xy}} $Hauptrichtung (Winkel) für die Hauptnormalspannung$\tan (2 \alpha^*) = \frac{2 \tau_{xy}}{\sigma_x - \sigma_{y}}$      Es existieren zwei Winkel, für welche die obige Gleichung erfüllt ...
  15. Satz von Steiner (Parallelverschiebung der Achsen)
    Balkenbiegung > Flächenträgheitsmomente > Satz von Steiner (Parallelverschiebung der Achsen)
    Satz von Steiner bersicht
    ... in Bezug auf die Koordinatenachsen erfolgen, so ist die Ausgangssituation oft so beschaffen, dass die Koordinatenachsen auch durch den entsprechenden Flächenschwerpunkt verlaufen. Im Folgenden wird nun der Fall betrachtet in welchem diese Ausgangssituation nicht mehr vorliegt, d.h. also, die Achsen nicht mehr durch den Flächenschwerpunkt verlaufen. Um dieses Problem dennoch mathematisch zu lösen, lassen sich zwei Lösungswege einschlagen:1. Direkte ...
  16. Zusammenhang von Verschiebungen und Verzerrungen
    Mehrachsige Spannungszustände > Ebener Verzerrungszustand > Zusammenhang von Verschiebungen und Verzerrungen
    Verformungen am Zugstab
    ... dem Ausgangsquadrat besitzt Punkt $A$ die Koordinaten $(x | y)$, Punkt $C$ die Koordinaten $(x + dx | y)$ und Punkt $B$ besitzt die Koordinaten $(x | y + dy)$.VerschiebungEs werden als nächstes die Verschiebungen der Punkte betrachtet:$A$ besitzt die Verschiebung:$u_A = u(x,y)$$v_A = v(x,y)$$C$ besitzt die Verschiebung (Taylorreihe):$u_C = u(x,y) + \frac{\partial u}{\partial x}dx = u_A + \frac{\partial u}{\partial x}dx$    $v_C = v(x,y) + \frac{\partial v}{\partial x}dx ...
  17. Extremwerte der Normalspannungen (Hauptnormalspannungen)
    Mehrachsige Spannungszustände > Hauptspannungen > Extremwerte der Normalspannungen (Hauptnormalspannungen)
    Hauptspannungen Normalspannung
    ... Hauptrichtung, also die Drehung des Ausgangskoordinatensystems um einen bestimmten Winkel, so dass die Hauptnormalspannungen auftreten, erfolgt durch:$\tan (2 \alpha^*) = \frac{2 \tau_{xy}}{\sigma_x - \sigma_{y}}$    Um den Winkel $\alpha^*$ zu berechnen muss die Gleichung nach $\alpha^*$ aufgelöst werden:$2 \alpha^*) = \tan^{-1}(\frac{2 \tau_{xy}}{\sigma_x - \sigma_{y}})$    Nicht vergessen den resultierenden Winkel noch durch $2$ zu teilen. Resultiert ein positiver ...
  18. Flächenträgheitsmomente: Koordinatentransformation
    Balkenbiegung > Flächenträgheitsmomente > Flächenträgheitsmomente: Koordinatentransformation
    Drehung des Koordinatensystems
    ... berechnen lassen, wenn das Ursprungskoordinatensystem um einen mathematisch positiven Winkel $\alpha $ gedreht wird. Zunächst erfolgt die Herleitung der Formeln zur Bestimmung der Flächenträgheitsmomente für das gedrehte Koordinatensystem, danach erfolgt die Zusammenfassung der Formeln und zum Schluss ein Anwendungsbeispiel.Die Koordinaten aus dem bisherigen ebenen Koordinatensystem $y, z$ werden nun in das Koordinatensystem $\xi \eta $ überführt. ...
  19. Extremwerte der Schubspannungen (Hauptschubspannungen)
    Mehrachsige Spannungszustände > Hauptspannungen > Extremwerte der Schubspannungen (Hauptschubspannungen)
    ... der Winkel also um welchen das Ausgangskoordinatensystem gedreht werden muss, damit die Hauptschubspannung auftritt, wird bestimmt zu:$\frac{1}{\tan (2\alpha^{**})} = - \frac{2\tau_{xy}}{(\sigma_x - \sigma_y)}$Um den Winkel zu bestimmen, muss die Gleichung nach $\alpha^{**}$ aufgelöst werden:$2 \alpha^{**} = \tan^{-1} ( - \frac{(\sigma_x - \sigma_y)}{2\tau_{xy}})$Nicht vergessen den resultierenden Winkel noch durch $2$ zu teilen. Resultiert ein positiver Winkel, so erfolgt die ...
  20. Beispiel: Mohrscher Spannungskreis
    Mehrachsige Spannungszustände > Mohrscher Spannungskreis > Beispiel: Mohrscher Spannungskreis
    Mohrscher Spannungskreis Beispiel
    ... Hauptrichtungen verwendet werden.HauptrichtungenKoordinatentransformationDer Drehwinkel $\beta = 40°$ ist positiv. Es handelt sich also um die Linksdrehung des Ausgangskoordinatensystems um 40° zur x-Achse. Um die Normalspannungen und Schubspannung für den Winkel $\beta = 40°$ zu erhalten, muss der Winkel $2 \beta$ von der Verbindungslinie $P_1(-30/-10)$ zu $\sigma_m$ aus abgetragen werden. Im Mohrschen Spannungskreis erfolgt die Abtragung entgegen der Drehung des Koordinatensystems, ...
  • 108 Texte mit 216 Bildern
  • 139 Übungsaufgaben
  • und 21 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG


Technische Mechanik 1: Statik

  1. Statische Bestimmtheit räumlicher Tragwerke
    Lagerreaktionen > Statische Bestimmtheit räumlicher Tragwerke
    Lagerreaktionsberechnung bei rumlichen Tragwerken
    ... erfolgen:In der obigen Grafik ist das $x,y,z$-Koordinatensystem eingeführt worden und die Lagerkräfte sowie die Abmessungen eingezeichnet worden. Das Lager $A$ überträgt nur Kräfte senkrecht zur Kurbel, d.h. keine Kraft in $x$-Richtung (da dies eine parallele Kraft zur Kurbel darstellen würde). Das Lager $B$ hingegen überträgt Kräfte in alle drei Raumrichtungen. Die Richtungen der Lagerkräfte werden zunächst so wie eingezeichnet angenommen. ...
  2. Schnittgrößen an räumlichen Tragwerken
    Schnittmethode und Schnittgrößen > Schnittgrößen an räumlichen Tragwerken
    ... besitzen $ R $ und $ M $ nun drei Koordinatenrichtungen $ [x,y,z] $.$\ R= \left(\begin {array}{c} N \\ Q_y \\ Q_z \end {array}\right) \rightarrow $ N ist die Normalkraft in x-Richtung. Bei den anderen beiden Kräften handelt es sich um die bekannten Querkräfte, welche senkrecht zur x-Achse wirken. $\ M= \left(\begin {array}{c} M_T \\ M_y \\ M_z \end {array}\right) \rightarrow  M_T $ ist die Drehung um die x-Achse und wird als Torsion bezeichnet. Eine Torsion kann ...
  3. Räumliche Zusammensetzung von Kräften
    Einzelkräfte mit verschiedenen Angriffspunkten > Räumliches Kräftesystem > Räumliche Zusammensetzung von Kräften
    Krfte im Raum
    ... Dazu benötigt man das Einzeichnen des Koordinatensystems. Der Bezugspunkt $X$ ist dabei der Koordinatenursprung. Die Kräfte werden solange parallel zu sich selbst verschoben, bis diese die Wirkungslinie des Bezugspunktes $X$ schneiden. Kräfte im Raum - KoordinatensystemBerechnung der Teilresultierenden$R_x = \sum{F_{ix}}  = F_1 \cdot \cos (180°) + F_3 \cdot \cos (180°) $           (alle anderen fallen weg)$= -F_1 - F_3 = -5 - 10 ...
  4. Schnittgrößen am Bogen
    Schnittmethode und Schnittgrößen > Schnittgrößen linienförmiger Tragwerke > Schnittgrößen am Bogen
    SChnittgren am Bogen Koordinatensystem
    ... wirkt in Richtung der negativen $y$-Achse. Das Koordinatensystem mit eingezeichneter Querkraft und Normalkraft, sowie den Lagerkräften $A_h$ und $A_v$, sieht wie folgt aus:Schnittgrößen am Bogen: KoordinatensystemDer Winkel von 35° wurde übernommen. Die gestrichelten Linien (Hilfslinien) bilden einen 90° Winkel. Die Querkraft und Normalkraft bilden auch einen 90° Winkel, da die Normalkraft auf der positiven $x$-Achse liegt und die Querkraft auf der negativen $y$-Achse. ...
  5. Flächenschwerpunkte
    Schwerpunkte > Flächenschwerpunkte
    Flchenschwerpunkt
    ... der Teilflächen eintragen3. Bezugskoordinatensystem festlegen. Das Bezugskoordinatensystem kann beliebig gewählt werden. Die Abmessungen vom Ursprung des Bezugskoordinatensystems zu den Schwerpunkten müssen gegeben sein.4. Abstände in $x$ und $y$-Richtung bestimmen (sofern $x,y$-Koordinatensystem zugrunde liegt). Dabei auf negative und positive Abstände achten. Ausgehend vom Bezugskoordinatensystem wird der Abstand positiv gewählt, wenn man sich zum Schwerpunkt ...
  6. Linienschwerpunkte
    Schwerpunkte > Linienschwerpunkte
    Linienschwerpunkt gerade Linie
    ... Die Frage ist nun, in welchem Abstand zum Koordinatenursprung dieser auf der $x$-Achse liegt. Im Folgenden soll dies anhand eines Viertelkreisbogens veranschaulicht werden.Linienschwerpunkt KreisausschnittIn der obigen Grafik (2) ist aus dem Kreisausschnitt ein infinitesimal kleiner Ausschnitt mit der Breite $ds$ gewählt worden. Dieser wird mit $ds = R \cdot d\varphi$ zu einer Linie approximiert (rote Linie). Der Schnittpunkt mit der x-Achse dieser roten Linie (gestrichelte Linie) wird ...
  7. Haftreibung
    Reibung und Haftung > Haftreibung
    Haftreibung, Geschwindigkeit = 0
    ... der rechten Grafik ist das Koordinatensystem eingezeichnet mit dem Winkel $\alpha$. $H$ und $F$ befinden sich beide auf der $x$-Achse nur entgegengesetzt mit dem Winkel $\alpha$ zur Hilfslinie (gestrichelte Linie). $N$ zeigt in Richtung der positiven $y$-Achse. Mithilfe der Gleichgewichtsbedingungen können jetzt die fehlenden Größen ermittelt werden. Die Berechnung der Winkel erfolgt hier immer zur positiven $x$-Achse hin:Pfeil nach links oben ($y$-Achse): ...
  8. Bestimmung von Momenten
    Dieser Text ist als Beispielinhalt frei zugänglich!
    Einzelkräfte mit verschiedenen Angriffspunkten > Ebenes Kräftesystem > Bestimmung von Momenten
    Bestimmung von Momenten
    ... addieren. Dazu stellt man sich $F_1$ in einem Koordinatensystem vor. Die Kraft $F_1$ würde im 4. Quadraten liegen. Die Berechnung erfolgt:$R_x = F_1 \cos (45) = F_1 \cdot 0,71$.     ($R_x$ zeigt zur positiven x-Achse)$R_y = F_1 \sin (45) = F_1 \cdot 0,71$.     ($R_y$ zeigt zur negativen y-Achse)Die Momentenberechnung erfolgt nun so, dass man ausgehend von der Lage von $F_1$ die Resultierende $R_x$ solange parallel zu sich selbst nach unten verschiebt bis diese den Bezugspunkt ...
  9. Gleichgewichtsbedingungen ebener Kräftesysteme
    Einzelkräfte mit verschiedenen Angriffspunkten > Ebenes Kräftesystem > Gleichgewichtsbedingungen ebener Kräftesysteme
    Beispiel: Gleichgewicht ebener Krftegruppen
    ... nächstes wird das Koordinatensystem zur Bestimmung der Kräfte eingezeichnet. Es wird hier der Bezugspunkt $C$ (siehe Ausgangsgrafik) gewählt und die Kräfte parallel zu sich selbst bis zu diesem Punkt verschoben. Unter Berücksichtigung der Winkel ergbit sich folgende Skizze:Die Gleichgewichtsbedingung in $x$-Richtung lautet:$\rightarrow : W_1 \cos (0°) + S \cos (120°) + W_2 \cos (180°) + G \cos (270°) = 0$verkürzt: $W_1 + S \cos ...
  10. Einzelne parallele Kräfte
    Schwerpunkte > Einzelne parallele Kräfte
    Haltekraft
    ... gesuchten Abstände $ x_s $ und $ y_s $ vom Koordinatenursprung zum Schwerpunkt $ S $:$\ x_s = \frac{\sum x_i F_i}{\sum F_i} $ und$\ y_s = \frac{\sum y_i F_i}{\sum F_i} $.  Anwendungsbeispiel: Schwerpunkt im RaumSchwerpunkt im RaumIn der obigen Grafik sind die Kräfte $F_1 = 10 N$, $F_2 = 20 N$ und $F_3 = 15 N$ abgebildet, die auf den dreidimensionalen Körper wirken. Sei $x_1 = 3m$, $x_2 = 3m$ und $x_3 = 2m$, sowie $y_1 = 1m$, $y_2 = 3m$ und $y_3 = 5m$. Wie groß ist die ...
  11. Schnittgrößen: Einzelkräfte am Balken
    Schnittmethode und Schnittgrößen > Schnittgrößen linienförmiger Tragwerke > Schnittgrößen am Balken > Schnittgrößen: Einzelkräfte am Balken
    Schnittgren am Balken Beispiel
    ... die folgende Vorgehensweise:1. Festlegung des Koordinatensystems, sofern dies nicht bereits vorgegeben ist.2. Bestimmung der Auflagerreaktionen [Lager] am gesamten Balken. Hier erfolgt die Betrachtung am "noch ungeschnittenen" Balken unter Berücksichtigung aller von außen wirkenden Kräfte.3. Zerlegung des Balkens in Bereiche, in denen ein Belastungswechsel durch äußere Kräfte und Momente auftritt.4. Einzeichnen aller Schnittgrößen am positiven (linken) ...
  • 74 Texte mit 254 Bildern
  • 128 Übungsaufgaben
  • und 26 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG


Analysis und Gewöhnliche Differentialgleichungen

  1. Funktionen mehrerer Veränderlicher
    Funktionen mehrerer Veränderlicher
    Funktion mit mehreren Vernderlichen
    ... Funktionen mit einer Variablen $x$ in einem Koordinatensystem dargestellt, indem die Variable $x$-Wert auf der Abszisse ($x$-Achse) und der dazugehörige $y$-Wert auf der Ordinate ($y$-Achse) abgetragen wurde. Bei Funktionen mit mehreren Veränderlichen funktioniert dies nicht mehr so einfach, denn es existieren mindestens zwei Variablen. Bei Funktionen mit zwei Variablen kann man die dreidimensionale Ansicht wählen, um die Funktion darzustellen. Es sei die Funktion: $z = ...
  2. Richtungsfeld und Isoklinen
    Gewöhnliche Differentialgleichungen > Richtungsfeld und Isoklinen
    Isoklinen (blau)
    ... (x) = F(x,y(x)), $ so lässt sich in einem Koordinatensystem ein Richtungsfeld erzeugen. Dieses Richtungsfeld besteht aus Punkten $ (x,y) $ denen in der Ebene ein Vektor mit der Steigung $ F(x,y) $ zugeordnet wird. Jeder dieser Vektoren gibt an, welche Richtung der Graphen der Differentialgleichung hätte, sofern dieser durch den jeweiligen Punkt $ (x,y) $ verliefe.Zusammenfassend lässt sich sagen, dass sich ein Richtungsfeld sich aus all den Punkten (inkl. Vektoren) erzeugen lässt, ...
  3. Bogenlänge berechnen
    Kurveneigenschaften im ebenen Raum > Bogenlänge berechnen
    Bogenlnge
    ... kartesisch, durch Parameter oder durch Polarkoordinaten erfolgen. Im Folgenden eine Übersicht der Darstellungsarten sowie die jeweils zugehörigen Längen- und Bogenelementbeschreibungen. DarstellungsartKurvenlänge $ L$Bogenelement $ ds$kartesisch:$\ y = f(x) $$\ a \le  x \le b $$\int\limits_a^b \sqrt{1 + (f' (x))^2} dx $$\sqrt{dx^2 + dy^2} $$ = \sqrt{1 + f'^2} dx$Parameter:$\vec{x}= \left(\begin{array}{c} x(t) \\ y(t)\end{array}\right) $$\ t_0 \le t \le t_1 $$\int\limits_{t_1}^{t_2} ...
  4. Darstellungsarten ebener Kurven
    Darstellungsarten ebener Kurven
    ... Darstellung $\ F(x,y) = 0$,3. Polarkoordinatendarstellung $\ r = r(\varphi), \varphi_0 \le \varphi \le \varphi_1 $ und4. Parameterdarstellung $\vec{x} = \vec{x}(t) = \left(\begin{array}{c}\ x(t) \\ y(t) \end{array}\right), t_0 \le t \le t_1$.
  5. Stetigkeit und Unstetigkeit
    Funktionen mehrerer Veränderlicher > Stetigkeit und Unstetigkeit
    ... im Nullpunkt $(0,0)$ mithilfe von Polarkoordinaten zeigen. Dies ist vor allem dann nützlich, wenn es sich um rationale Funktionen handelt. Man setzt dafür:$x = r \cos (\varphi)$$y = r \sin (\varphi)$und lässt $r$ gegen Null laufen.Erhält man dann einen Grenzwert der unabhängig vom Winkel $\varphi$ ist und der sogar den Wert Null hat, dann wurde gezeigt, dass die Funktion in dem betrachteten Punkt stetig ist.Gegeben sei die Funktion $\begin{equation} z = f(x,y) ...
  6. Polarkoordinatendarstellung
    Darstellungsarten ebener Kurven > Polarkoordinatendarstellung
    Polarkoordinatendarstellung
    ... es hilfreicher Kurven anstelle von kartesischen Koordinaten [$\ x(t)=.. $ bzw, $ y(t)=.. $] als Polarkoordinaten darzustellen.Hierbei wird der Abstand in Abhängigkeit vom jeweiligen Winkel angegeben:$r = r(\varphi) $ mit  $\varphi \in [a, b]$PolarkoordinatendarstellungMan kann einen Punkt auf einer Funktion auch durch Polarkoordinaten angeben. In der obigen Grafik ist der Punkt einer Funktion in $x$-$y$-Ebene zu sehen. Der Winkel $\varphi$ wird von dem Strahl $r(\varphi)$ (welcher vom ...
  7. Parameterdarstellung
    Darstellungsarten ebener Kurven > Parameterdarstellung
    Ebene Kurve
    ... beliebige Kurven $K$ in einem kartesischen Koordinatensystem als Funktionsgraphen darzustellen. Bei einer Funktion existiert zu jedem $x$-Wert nur ein $y$-Wert, weshalb beispielsweise die Darstellung eines Vollkreises nicht möglich ist (ein $x$-Wert dem zwei $y$-Werte zugeordnet werden). Auch bei einer Kurve kann es vorkommen, dass z.B. durch eine Schlaufe einem $x$-Wert zwei $y$-Werte zugewiesen sind (wie beim Kreis).ParameterdarstellungAbhilfe schafft hier die Einführung ...
  8. Hauptnormalenvektor
    Kurveneigenschaften im ebenen Raum > Hauptnormalenvektor
    Normalenvektor
    ... -\dot{y} \\ \dot{x} \end {array}\right)$Polarkoordinaten$\ r = r(\varphi)$$\vec{n}=\left(\begin{array}{c} -r\ cos\varphi - \dot{r}\ sin \varphi \\  -r\ sin\varphi + \dot{r}\ cos \varphi \end {array}\right)$$\ |\vec{n}| = \sqrt{r^2 + \dot{r}^2} $Explizite DarstellungGegeben sei die Funktion: $f(x) = x^2$ und der Punkt $(2, \ 4)$. Wie sieht der dazugehörige Normalenvektor aus?Der Normalenvektor bei der expliziten Darstellung ergibt sich:$\vec{n}= (-f'(x), \  1) = (-2x, \ 1)$Im ...
  9. Krümmungsmittelpunkt / Krümmung
    Kurveneigenschaften im ebenen Raum > Krümmung > Krümmungsmittelpunkt / Krümmung
    Krmmung
    ... + \dot{y}^2)^{\frac{3}{2}}}$Polarkoordinaten$r = r(\varphi)$$\kappa(\varphi) = \frac{r^2 + 2r^2 - r\ddot{r}}{(r^2 + \dot{r}^2)^{\frac{3}{2}}}$Negative KrümmungGegeben sei die Funktion: $f(x) = x^3 - x$ in expliziter Darstellung. Die Krümmung soll für $x_1 = -0,5$ bestimmt werden.Bestimmung von Tangenten- und Normalenvektor Zum besseren Verständnis wird der Tangenten- und Normalenvektor ebenfalls berechnet (siehe entsprechende Kapitel).Der dazugehörige ...
  • 54 Texte mit 37 Bildern
  • 79 Übungsaufgaben
  • und 12 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG


Analysis und Lineare Algebra

  1. Ableitungen
    Differentialrechnung > Ableitungen
    Funktionen mit Steigung, Sattel- und Wendepunkten
    ... Speziell in zwei- oder mehrdimensionalen Koordinatensystemen kann mittels Ableitungen bestimmt werden ob ein Graph steigt oder fällt. Außerdem können Sattelpunkte, Wendepunkte sowie Hoch- und Tiefpunkte bestimmt werden.Funktionen mit Steigung, Sattelpunkt, Hochpunkt und TiefpunktIn der obigen Abbildung sind drei Graphen eingezeichnet. Der $\color{orange}{\mathbf{orangene}}$ Graph fällt zuerst, erreicht bei (0;3) seinen Tiefpunkt und steigt anschließend wieder. ...
  2. Übungsaufgaben zur Vektorrechnung
    Vektorrechnung > Übungsaufgaben zur Vektorrechnung
    ... stellen Ortsvektoren dar, welche jeweils im Koordinatenurpsrung beginnen und auf die beiden Punkt $A(8,-3,-5)$ und $B(5,5,-6)$ zeigen.Die beiden Endpunkte sind also $A$ und $B$. Es soll nun der Abstand zwischen diesen Punkten bestimmt werden. Der Abstand entspricht also gleich der Länge des Vektors, welcher zwischen diesen beiden Punkten liegt. Hierbei kann man den Vektor $\vec{AB}$ oder den Vektor $\vec{BA}$ heranziehen, beide weisen dieselbe Länge auf. Es gilt:$\vec{AB} = \vec{b} ...
  3. Trigonometrische Funktion
    Elementare Funktionen > Nicht rationale Funktionen > Trigonometrische Funktion
    Winkelfunktionen
    ... Punkt $P$ auf dem Einheitskreis mit den Koordinaten $(x, y)$.Wie lautet der Punkt auf dem Einheitskreis wenn $\alpha =  30°$ ?$\cos(30) \approx 0,87 \rightarrow x = 0,87$$\sin(30) = 0,5 \rightarrow y = 0,5$$P(0,87|0,5)$Berechnung eines Punktes auf dem EinheitskreisDefinition im Rechtwinkligen Dreieck mittels Kehrwertfunktionen:Kosekansfunktion: $ csc \alpha = \frac{1}{sin \alpha}$Sekansfunktion: $ sec \alpha = \frac{1}{cos \alpha}$
  4. Symmetrieeigenschaften der trigonomterischen Funktionen
    Elementare Funktionen > Nicht rationale Funktionen > Trigonometrische Funktion > Symmetrieeigenschaften der trigonomterischen Funktionen
    Quadranten
    ... welcher seiner Mittelpunkt im Ursprung eines Koordinatensystems hat, unterteilt man die 4 Bereiche, in denen sich der jeweilige Winkel befindet, in Quadranten. Die Bereichseinteilung erfolgt mit Hilfe der Kreiszahl $\pi $. Wobei $\pi$ die Maßeinheit Radiant ist. Ausgedrückt in Bogenmaß ist $\pi$ Radiant $= 180$ Grad. Der Vollwinkel hat demnach $2\pi$ Radiant $= 360$ Grad und $\frac{\pi}{2} = 90°$.Bereich I $ = 0 < \alpha < \frac {\pi}{2}$Bereich II $ = \frac {\pi}{2} ...
  5. Produktmengen
    Grundlagen: Mengenlehre und Reelle Zahlen > Mengenlehre > Mengenoperationen > Produktmengen
    ... man nun diese Paare auf ein kartesisches Koordinatensystem, so erhält man ein Punktegitter von geordneten Paaren $(x,y)$ in der Koordinatenebene.Gegeben seien die Mengen $A = \{1,2,3,4 \}$ und $B = \{X,Y,Z \}$.$A$ besitzt vier Elemente, $B$ drei Elemente. Die neue Menge $M = A \times B$ müsste also $4 \cdot 3 = 12$ Elemente besitzen.Wir erhalten somit:$A \times B = \{ (1, X), (2, X), (3, X), (4, X),(1, Y), (2,Y), (3, Y), (4, Y),(1, Z), (2, Z), (3, Z), (4, Z) \}$.Zudem ist es möglich ...
  6. Skalarprodukt und Winkel
    Vektorrechnung > Das Skalarprodukt > Skalarprodukt und Winkel
    Skalarprodukt eingeschlossener Winkel
    ...  $\vec{a} \cdot \vec{b}$  aus den Koordinaten der Vektoren $\vec{a}$ und $\vec{b}$ berechnen und daraus den Winkel $\cos (\varphi)$ ermitteln.Berechnung Skalarprodukt$\vec{a} \cdot \vec{b} =|\vec{a}| \cdot |\vec{b}| \cdot \cos (\varphi) = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$Winkelberechnung$\cos (\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_1b_1 + a_2b_2 + a_3b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}$Anwendungsbeispiel: ...
  7. Komplexe Zahlen und Polarkoordinaten
    Komplexe Zahlen > Komplexe Zahlen und Polarkoordinaten
    Polarkoordinaten
    ... (Polarwinkel) kennzeichen lässt:PolarkoordinatenUmformung von kartesische in polare KoordinatenWir wollen nun also einen Punkt im obigen Koordinatensystem beschreiben. Wenn wir diesen Punkt in kartesische Koordinate angeben, so verwenden wir die $x$- und $y$-Koordinaten.Wir können aber auch Polarkoordinaten verwenden, um einen Punkt im obigen Koordinatensystem anzugeben. Hier benötigen wir die Länge des Vektors $r = |\vec{r}|$ und den Winkel $\varphi$ zwischen dem Vektor ...
  8. Einführung in die Vektorrechnung
    Vektorrechnung > Einführung in die Vektorrechnung
    Vektoren in der Ebene
    ... Raum darstellen. Vektoren werden durch ihre Koordinaten bestimmt. Ein Vektor in einem 2-dimensionalen Raum $\mathbb{R}^2$ besitzt dabei zwei Koordinaten, ein Vektor in einem 3-dimensionalen Raum $\mathbb{R}^3$ drei Koordinaten und ein Vektor in einem n-dimensionalen $\mathbb{R}^n$ Raum $n$ Koordinaten. Vektor $\vec{a}$ in einem $n$-dimensionalen Raum: $\vec{a} = \left( \begin{array}{c} x \\ y \\ z \\ . \\ . \\ . \\ n \end{array} \right)$Vektoren werden in einem 2-dimensionalen ...
  9. Einheitsvektor, Länge von Vektoren
    Vektorrechnung > Einführung in die Vektorrechnung > Einheitsvektor, Länge von Vektoren
    Basisvektoren
    ... bezeichnet und weist in Richtung der positiven Koordinatenachsen.BasisvektorenDie drei Achsen $x$, $y$ und $z$ eines dreidimensionalen Koordinatensystems werden durch die drei Einheitsvektoren $\vec{e_1} = (1, 0, 0)$,  $\vec{e_2} = (0, 1, 0)$ und $\vec{e_3} = (0, 0, 1)$ bestimmt. Da diese drei Vektoren die Basis für das Koordinatensystem bilden, werden diese speziellen Einheitsvektoren auch Basisvektoren genannt.Hierbei stellt  $\vec{e_1}$  den Einheitsvektor in $x$ - Richtung ...
  • 116 Texte mit 87 Bildern
  • 200 Übungsaufgaben
  • und 23 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG


Produktion

  1. Einperiodige Produktionsprogrammplanung (mehrere Engpässe)
    Aggregierte Produktionsplanung > Einstufige Produktionsprogrammplanung > Einstufige einperiodige Produktionsprogrammplanung > Einperiodige Produktionsprogrammplanung (mehrere Engpässe)
    Grafische Ermittlung des optimalen Produktionsprogramms
    ... Die einzelnen Restriktionen werden in ein Koordinatensystem eingezeichnet und dann mithilfe der Zielfunktion der Punkt gesucht, der gerade noch innerhalb des zulässigen Bereiches liegt.Grafische Ermittlung des optimalen Produktionsprogramms1. Einzeichnen der RestriktionenDie Nebenbedingungen werden nacheinander in ein Koordinatensystem eingezeichnet. Die Produktionskapazität (in rot eingezeichnet) hat die Form:$ 0,5 x_1 + 1,25 x_2 \le 3.750 $ Um $x_1$ einzuzeichnen, wird $x_2 ...
  • 75 Texte mit 74 Bildern
  • 146 Übungsaufgaben
  • und 14 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG