ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Technische Mechanik 1: Statik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse

Linienschwerpunkte

WebinarTerminankündigung aus unserem Online-Kurs Technische Mechanik 3: Dynamik:
 Am 06.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Dynamik) Gradlinige Bewegung eines Massenpunktes
- Dieses 60-minütige Gratis-Webinar behandelt die geradlinige Bewegung eines Massenpunktes.
[weitere Informationen] [Terminübersicht]

LinienSchwerpunkte konzentrieren sich, anders als Flächenschwerpunkte, auf die Berechnung des Schwerpunktes der LINIE. Das bedeutet zum Beispiel bei einem Kreisausschnitt, dass nicht die gesamte Fläche dieses Kreisausschnittes betrachtet wird, sondern nur der Kreisbogen. Die Berechnung eines Linienschwerpunktes gleicht der Berechnung des Schwerpunktes einer Fläche.

Hierzu substituiert man einfach:

$ x_s = \frac{1}{A} \int x \; dA $ [Fläche]   $\rightarrow$

Methode

(1) $x_s = \frac{1}{l} \int x \; ds $  bzw. (2) $x_s = \frac{\int x \; ds}{\int ds}$   [Linie]

$ y_s = \frac{1}{A} \int y \; dA $ [Fläche]    $\rightarrow$

Methode

(1) $y_s = \frac{1}{l} \int y \; ds $ bzw. (2) $y_s = \frac{\int y \; ds}{\int ds}$   [Linie

Es wurde also anstelle des Flächenelements $ dA $ und der Fläche $ A $ nun das Linienelement $ ds$ und die Linienlänge $ l $ eingesetzt. Ist die Linienlänge $l$ bekannt, so kann die erste Formel angewandt werden. Ist diese nicht bekannt, so wird die zweite Formel verwendet.

Merke

Handelt es sich um eine gerade Linie, so muss der Schwerpunkt in der Mitte der Linie liegen. Weist die Linie jedoch eine oder mehrere Krümmungen auf, so liegt der Schwerpunkt fast immer außerhalb dieser.
Linienschwerpunkt gerade Linie
Linienschwerpunkt: Gerade Linie

Beispiel

Gegeben sei die obige gerade Linie mit $l = 10 m$. Wo liegt der Schwerpunkt?

$y_s$ ist in diesem Fall null, da es sich um eine gerade Linie handelt.

$ x_s = \frac{1}{l} \int_0^l x \; ds = \frac{1}{10} [\frac{1}{2} x^2]_0^{10} = \frac{1}{20} [10^2 - 0^2] = 5 m$

bzw.

$x_s = \frac{\int x \; ds}{\int ds} = \frac{[\frac{1}{2} x^2]}{[x]} = [\frac{1}{2} x]_0^{10} = 5m$

Das bedeutet also, dass sich der Schwerpunkt $x_s = 5m$ in der Mitte der Linie befindet.

Linienschwerpunkt Kreisausschnitt

Bei der Berechnung des Linienschwerpunktes eines Kreisausschnittes legt man die Mitte des Kreisbogens auf die $x$-Achse (siehe untere Grafik 1). Das bedeutet, dass der Schwerpunkt auf der $x$-Achse liegt. Die Frage ist nun, in welchem Abstand zum Koordinatenursprung dieser auf der $x$-Achse liegt. Im Folgenden soll dies anhand eines Viertelkreisbogens veranschaulicht werden.

Linienschwerpunkt Kreisausschnitt
Linienschwerpunkt Kreisausschnitt

In der obigen Grafik (2) ist aus dem Kreisausschnitt ein infinitesimal kleiner Ausschnitt mit der Breite $ds$ gewählt worden. Dieser wird mit $ds = R \cdot d\varphi$ zu einer Linie approximiert (rote Linie). Der Schnittpunkt mit der x-Achse dieser roten Linie (gestrichelte Linie) wird mit dem Abstand zum Koordinatenursprung bestimmt durch $x = R \cdot \cos (\varphi)$. Es wird davon ausgegangen, dass es sich hierbei um einen Viertelkreis handelt. 

Berechnung ohne Länge

$x_s = \frac{\int x \; ds}{\int ds}$

$x_s = \frac{\int R \cdot \cos (\varphi) \cdot R \cdot d\varphi}{\int R \cdot d\varphi}$

$R$ aus dem Integral ziehen:

$x_s = \frac{R^2}{R} \frac{\int_{-\alpha}^{\alpha} \cos (\varphi) \cdot d\varphi}{\int_{-\alpha}^{\alpha}  d\varphi}$

Integral auflösen:

$x_s = R \frac{[ \sin (\varphi)]_{-\alpha}^{\alpha} }{[ \varphi]_{-\alpha}^{\alpha} }$

Da es sich um einen Viertelkreisbogen handelt, ist $\alpha = \pi /4$ (beide $\alpha$ zusammen ergeben also den Viertelkreis mit $2\alpha = \pi/2$). Für die Berechnung mit Sinus geben wir statt des Bogenmaßes $\alpha =\pi/4$ den Radius an mit $\alpha = 45°$, da manche Taschenrechner das Bogenmaß nicht umrechnen (ist der Taschenrechner auf DEG eingestellt berechnet er das Winkelmaß, bei RAD das Bogenmaß).

Merke

Umrechnung von Bogenmaß in Winkelmaß:

Bogenmaß $\cdot \frac{360°}{2\pi}$

$x_s = R \frac{[ \sin (\frac{\pi}{4}) - \sin (-\frac{\pi}{4}) ]}{[ \frac{\pi}{4} - -\frac{\pi}{4}]} $

Ersetzen von Bogenmaß durch Winkelmaß bei der Sinusberechnung, wenn der Taschenrechner das Bogenmaß nicht berechnet:

$x_s = R \frac{[ \sin (45°) - \sin (-45°) ]}{[ \frac{\pi}{4} + \frac{\pi}{4}]} $

$x_s = R \frac{\sqrt{2}}{\frac{2\pi}{4}} = \frac{R \cdot \sqrt{2} \cdot 2}{\pi}$

Genau so erfolgt auch die Berechnung für den Halbkreisbogen, nur dass dann $\alpha = \frac{\pi}{2}$ und das dazugehörige Winkelmaß $\alpha = 90°$ sein muss. Beide $\alpha$ zusammen ergeben dann wieder den Halbkreisbogen mit $2\alpha = \pi = 180°$.

Berechnung mit Länge

Der Umfang (Länge) eines Kreises ist $ 2 \pi \cdot R$. Da es sich hierbei um einen Viertelkreis handelt, muss das ganze durch 4 dividiert werden, um die Länge zu erhalten:

$l = \frac{ \pi \cdot R}{2}$

Berechnung des Schwerpunktes:

$x_s = \frac{1}{l} \int x \; ds$

$x_s = \frac{2}{\pi \cdot R} \int R \cdot \cos (\varphi) \cdot R \cdot d\varphi$ 

$R$ aus dem Integral ziehen:

$x_s = \frac{2R^2}{\pi \cdot R} \int  \cos (\varphi) \; d\varphi = \frac{2R}{\pi}  [\sin (\varphi)]_{-\alpha}^{\alpha}]$

Es wird wieder das Bogenmaß $\alpha = \pi/4$ verwendet und als Winkelmaß $\alpha = 45°$, falls der Taschenrechner das Bogenmaß nicht berechnet:

$x_s = \frac{2R}{\pi}  [\sin (\varphi)]_{-45°}^{45°}] =  \frac{2R}{\pi}  \cdot \sqrt{2}$

$x_s = \frac{R \cdot \sqrt{2} \cdot 2}{\pi}$

Das Ergebnis ist dasselbe wie oben. Ist die Länge bekannt bzw. einfach zu ermitteln empfiehlt sich die zweite Berechnung, da hier nur ein Integral berechnet werden muss.

Zusammengesetzte Linien

Die gleiche Substitution gilt für die Bestimmung von zusammengesetzten Linien $ l_i $ mit bekannten $ x_i, y_i $.

$ x_s = \frac{\sum x_i A_i}{\sum A_i}$ [Fläche] $ \rightarrow x_s = \frac{\sum x_i l_i}{\sum l_i}$ [Linie]

$ y_s = \frac{\sum y_i A_i}{\sum A_i}$ [Fläche] $ \rightarrow y_s = \frac{\sum y_i l_i}{\sum l_i}$ [Linie]

Erneut ist ersichtlich, dass die Gleichungen zur Bestimmung der Linienschwerpunkte den gleichen Aufbau besitzen, wie die Gleichungen zur Bestimmung von Flächenschwerpunkten.

Multiple-Choice
Welche Aussage zu Linienschwerpunkten ist richtig?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Linienschwerpunkte ist Teil eines interaktiven Online-Kurses zum Thema Technische Mechanik 1: Statik.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Technische Mechanik 1: StatikTechnische Mechanik 1: Statik
Dieser Inhalt ist Bestandteil des Online-Kurses

Technische Mechanik 1: Statik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Technische Mechanik 1
    • Einleitung zu Kurs: Technische Mechanik 1
  • Grundlagen der Technischen Mechanik
    • Einleitung zu Grundlagen der Technischen Mechanik
    • Der Kraftbegriff
    • Eigenschaften der Kraft
    • Darstellung der Kraft
    • Reaktionskräfte (Zwangskräfte)
    • Das Wechselwirkungsgesetz der technischen Mechanik (Lex Tertia)
    • Dimensionen und Einheiten der technischen Mechanik
  • Einzelkräfte mit gemeinsamen Angriffspunkt
    • Einleitung zu Einzelkräfte mit gemeinsamen Angriffspunkt
    • Zentrales Kräftesystem
    • Kräftepolygon in der Ebene
    • Kommutativgesetz
    • Verschränktes Kräftepolygon
    • Bestimmung der Resultierenden
      • Einleitung zu Bestimmung der Resultierenden
      • Kräfte mit gemeinsamer Wirkungslinie
      • Kräfte mit unterschiedlicher Wirkungslinie
        • Zwei Kräfte mit einem gemeinsamen Angriffspunkt
        • Mehrere Kräfte mit gemeinsamen Angriffspunkt
    • Kräftegleichgewicht in der Ebene
      • Kräftegleichgewicht bei zwei Kräften
      • Kräftegleichgewicht bei mehr als zwei Kräften
    • Kräftegleichgewicht im Raum
  • Einzelkräfte mit verschiedenen Angriffspunkten
    • Einleitung zu Einzelkräfte mit verschiedenen Angriffspunkten
    • Ebenes Kräftesystem
      • Kräfte mit parallelen Wirkungslinien
      • Kräftepaare und Kräftepaarmomente
      • Bestimmung von Momenten
      • Resultierende ebener Kräftegruppen
      • Gleichgewichtsbedingungen ebener Kräftesysteme
    • Räumliches Kräftesystem
      • Räumliche Zusammensetzung von Kräften
  • Schwerpunkte
    • Einzelne parallele Kräfte
    • Kontinuierlich verteilte Kräfte
    • Flächenschwerpunkte
    • Übersicht: Flächen mit Schwerpunktlage und Flächeninhalt
    • Linienschwerpunkte
  • Lagerreaktionen
    • Definition von Lagern
    • Statische Bestimmtheit ebener Tragwerke
    • Lagerreaktionsberechnung ebener Tragwerke
    • Statische Bestimmtheit räumlicher Tragwerke
    • Statische Bestimmheit mehrteiliger Tragwerke
      • Einleitung zu Statische Bestimmheit mehrteiliger Tragwerke
      • Anwendungsbeispiel Dreigelenkbogen
      • Anwendungsbeispiel Gelenkbalken
  • Fachwerke
    • Einleitung zu Fachwerke
    • Statische Bestimmtheit von Fachwerken
    • Aufbau eines Fachwerks
    • Verfahren zur Bestimmung der Stabkräfte
      • Rittersches Schnittverfahren
        • Einleitung zu Rittersches Schnittverfahren
        • Beispiel 1: Ritterschnittverfahren
        • Beispiel 2: Ritterschnittverfahren
      • Knotenpunktverfahren
        • Einleitung zu Knotenpunktverfahren
        • Bestimmung von Nullstäben
        • Beispiel: Knotenpunktverfahren
          • Einleitung zu Beispiel: Knotenpunktverfahren
          • 1. Bestimmung von Nullstäben
          • 2. Bestimmung der Lagerreaktionen
          • 3. Durchführung des Knotenpunktverfahrens
  • Schnittmethode und Schnittgrößen
    • Einleitung zu Schnittmethode und Schnittgrößen
    • Schnittgrößen linienförmiger Tragwerke
      • Schnittgrößen am Balken
        • Schnittgrößen: Einzelkräfte am Balken
        • Schnittgrößen: Streckenlast am Balken
          • Einleitung zu Schnittgrößen: Streckenlast am Balken
          • Streckenlast: Schnittgrößen durch Integration
          • Streckenlast: Schnittgrößen anhand der Gleichgewichtsbedingungen
      • Schnittgrößen am Rahmen
        • Einleitung zu Schnittgrößen am Rahmen
        • Beispiel: Kippender Stuhl
      • Schnittgrößen am Bogen
    • Schnittgrößen an räumlichen Tragwerken
    • Föppl-Klammer
  • Reibung und Haftung
    • Grundlagen der Reibung
    • Haftreibung
    • Gleitreibung
    • Seilreibung
  • 65
  • 22
  • 90
  • 209
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 20.05.2016:
    "Sehr gut"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 17.04.2016:
    " Perfekt!!!"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 10.04.2016:
    "nichts auszusetzen :D "

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 17.03.2016:
    "Sehr gut verständlich. :D"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 12.03.2016:
    "Top!! Brauche den Kurs hier zur Prüfungsvorbereitung eigentlich zur Auffrischung da alles bekannt. Lösungsansätze und vorgehen sehr simple erspart mir viel Zeit."

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 23.02.2016:
    "Zum jetzigen Zeitpunkt ist alles sehr gut verständlich."

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 09.02.2016:
    "sehr ausführlich und mit viel Liebe "

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 02.02.2016:
    "Sehr hilfreich. Ich besuche gerade die bauhandwerkerschule und habe bis jetzt immer Schwierigkeiten im Fach Statik gehappt. Habe jetzt in 2 Stunden mehr gelernt (und alles verstanden) als in 3 Monaten Unterricht. Ich werde diese Online Kurse auf jeden fall weiterempfehlen! "

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 27.01.2016:
    "Videos sind sehr ausführlich erklärt, Schritte sehr gut nachvollziehbar"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 14.01.2016:
    "guter Kurs !"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 09.01.2016:
    "läuft gut :D"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 06.01.2016:
    "Diesen Kurs finde ich bis jetzt ganz gut! Alles ist gut verdeutlicht! :)"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 13.12.2015:
    "Sehr gut. :)"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 09.12.2015:
    "Ich fand es sehr gut, da es gute Beispiele gab und in den Videos ist alles sehr gut erklärt. Es ist alles verständlich und gut nachvollziehbar."

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 08.12.2015:
    "Gut und übersichtlich erklärt "

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 02.12.2015:
    "Sehr guter Kurs, die Videos sind Top und auch die Aufgaben zwischendurch fördern das "Behalten" des Wissens und beugen einem "Vergessen" vor. Echt spitzenmäßiger Online Lernkurs."

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 14.05.2015:
    "sehr gut, "

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 26.10.2014:
    "Echt Klasse! Es gibt einem ein gutes Gefühl und durch das erreichen von kleine Erfolgserlebnis, bin ich motiviert! "

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen