ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Wärmeübertragung: Wärmeleitung
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Erzwungene Konvektion > Rohrströmungen (kreisförmig):

Nußelt-Zahl für Überschlagsberechnungen

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Häufig reicht es aus, wenn man zur Bestimmung des Wärmeübergangskoeffizienten bei turbulenten Strömungen Überschlagsberechnung anwendet. Die mittleren Nußelt-Zahlen können dann laut VDI-Wärmeatlas (2013, S.789) wie folgt bestimmt werden  (nach Gnielinski):

Methode

$Nu_{d_i, turb} = 0,0214 \cdot (Re^{0,8} - 100) \cdot Pr^{0,4} \cdot (1 + (\frac{d_i}{l})^{2/3})$

gültig für

$0,5 \le Pr \le 1,5$

und zu:

Methode

$Nu_{d_i, turb} = 0,012 \cdot (Re^{0,87} - 280) \cdot Pr^{0,4} \cdot (1 + (\frac{d_i}{l})^{2/3})$

gültig für

$1,5 \le Pr \le 500$

Für den Übergangsbereich $2.300 < Re < 10^4$ kann die Berechnung der Nußelt-Zahl mittels der oben angegebenen Gleichungen für große Werte von $\frac{d_i}{l}$ ebenfalls durchgeführt werden.

Auch hier werden wieder die Stoffwerte für die mittlere Temperatur 

Methode

$T_m = \frac{T_{ein} + T_{aus}}{2}$

mit

$T_{ein}$ Fluidtemperatur beim Rohreintritt

$T_{aus}$ Fluidtemperatur beim Rohraustritt

für die Reynolds-Zahl und die Prandtl-Zahl eingesetzt. Diese ergeben sich zu:

$Re = \frac{w \cdot d_i}{\nu}$

$Pr = \frac{\nu}{a}$       mit  $a = \frac{\lambda}{\rho \cdot c_p}$

Die Richtung des Wärmestroms muss auch hier berücksichtigt werden:

Methode

$Nu = Nu_{d_i, turb} \cdot f_1$

Für Flüssigkeiten ergibt sich:  $f_1 = (\frac{Pr_m}{Pr_w})^{0,11}$

mit

$Pr_m$ Prandtl-Zahl des Fluids bei mittlerer Temperatur des Fluids

$Pr_w$ Prandtl-Zahl bei konstanter Wandtemperatur


Und für Gase:   $f_1 = (\frac{T_m}{T_w})^{n}$

mit:

$n = 0$ für $\frac{T_m}{T_w} > 1$ (Kühlen des Gases)

$n = 0,45$ für $0,5 < \frac{T_m}{T_w} < 1$ (Heizen des Gases)

Ist die mittlere Nußelt-Zahl bestimmt worden, so kann mittels der folgenden Gleichung der mittlere Wärmeübergangskoeffizient bestimmt werden:

Methode

$\alpha_m = \frac{Nu_{d_i, turb} \cdot \lambda}{d_i}$


Die Wärmestromdichte für das Rohr ergibt sich dann durch:

Methode

$\dot{q} = \alpha_m \cdot \triangle T_m$

mit

$\triangle T_m = \frac{T_{aus} - T_{ein}}{\ln \frac{T_w - T_{ein}}{T_w - T_{aus}}}$

Vorstellung des Online-Kurses Wärmeübertragung: WärmeleitungWärmeübertragung: Wärmeleitung
Dieser Inhalt ist Bestandteil des Online-Kurses

Wärmeübertragung: Wärmeleitung

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Wärmeübertragung: Überblick
    • Einleitung zu Wärmeübertragung: Überblick
  • Arten der Wärmeübertragung
    • Einleitung zu Arten der Wärmeübertragung
  • Wärmeleitung in einem Feststoff
    • Einleitung zu Wärmeleitung in einem Feststoff
    • Stationäre Wärmeleitung
      • Einleitung zu Stationäre Wärmeleitung
      • Fourier'sche Gesetz
      • Wärmeleitung durch eine ebene Wand
        • Einleitung zu Wärmeleitung durch eine ebene Wand
        • Wärmeübergangszahl einer ebenen Wand
        • Wärmeübergangszahl der Grenzschicht
        • Wärmedurchgangszahl einer ebenen Wand
      • Wärmeleitung durch eine zylindrische Wand
        • Einleitung zu Wärmeleitung durch eine zylindrische Wand
        • Wärmeübergangszahl einer zylindrischen Wand
        • Wärmeübergangszahl der Grenzschicht (Hohlzylinder)
        • Wärmedurchgangszahl einer zylindrischen Wand
      • Wärmeleitung durch eine Hohlkugelwand
        • Einleitung zu Wärmeleitung durch eine Hohlkugelwand
        • Wärmeübergangszahl einer Hohlkugelwand
        • Wärmeübergangszahl der Grenzschicht (Hohlkugelwand)
        • Wärmedurchgangszahl einer Hohlkugelwand
      • Widerstände der Wärmeleitung
        • Einleitung zu Widerstände der Wärmeleitung
        • Wärmeübergangswiderstand der Grenzschichten
        • Wärmedurchlasswiderstand
        • Wärmedurchgangswiderstand
        • Wärmewiderstand
      • Wärmeübergang an der Oberfläche
        • Einleitung zu Wärmeübergang an der Oberfläche
        • Unendlich langer Stab
        • Endlich langer Stab
        • Wärmeübergang am Stabende
        • Wärmestrom am Stabanfang
        • Temperaturvorgabe am Stabanfang und -ende
        • Rippenwirkungsgrad
        • Anwendungsbeispiel: Temperaturverlauf
    • Instationäre Wärmeleitung
      • Einleitung zu Instationäre Wärmeleitung
      • Dimensionslose Kennzahlen der instationären Wärmeleitung
      • Diagramme für den Temperaturverlauf
      • Anwendungsbeispiele: Instationäre Wärmeleitung
  • Erzwungene Konvektion
    • Einleitung zu Erzwungene Konvektion
    • Laminare und turbulente Grenzschicht
    • Strömungs- und Temperaturgrenzschicht
    • Reynolds-Zahl und Prandtl-Zahl
    • Nußelt-Zahl
    • Rohrströmungen (kreisförmig)
      • Einleitung zu Rohrströmungen (kreisförmig)
      • Nußelt-Zahl für laminare Rohrströmungen
      • Nußelt-Zahl für turbulente Rohrströmungen
      • Nußelt-Zahl für den Übergangsbereich
      • Richtung des Wärmestroms
      • Nußelt-Zahl für Überschlagsberechnungen
      • Anwendungsbeispiel: Berechnung der Wärmeübergangszahl (turbulente Strömung)
    • Rohrströmungen (nicht kreisförmig)
    • Ringspalte
    • Hydraulische Durchmesser einiger Querschnitte
    • Ebene Platte
    • Quer angeströmte Zylinder (Rohre)
    • Quer angeströmte Rohrreihen
      • Einleitung zu Quer angeströmte Rohrreihen
      • Mittlere Geschwindigkeit im Hohlraumanteil
      • Anordnung und Anzahl der Rohrreihen
    • Rippenrohre
      • Einleitung zu Rippenrohre
      • Geschwindigkeit im engsten Querschnitt
      • Nußelt-Zahl für querangeströmte Rippenrohre
    • Wärmeübertrager
      • Einleitung zu Wärmeübertrager
      • Anwendungsbeispiel: Wärmeübertrager
  • Freie Konvektion
    • Einleitung zu Freie Konvektion
    • Freie Konvektion an senkrechter ebener Wand
    • Freie Konvektion an geneigter ebener Wand
    • Freie Konvektion an horizontaler Wand
    • Freie Konvektion an gekrümmten Flächen
  • 64
  • 5
  • 42
  • 53
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Phillipp Grünewald

    Phillipp Grünewald

    "ingenieurkurse.de hat mir besonders bei den Mathe-Themen geholfen. Super Erklärungen!"
  • Martina Pfeiffer

    Martina Pfeiffer

    "Klasse für den Einstieg ins Ingenieurstudium."
  • Marcel Eberhardt

    Marcel Eberhardt

    "Ich mache mir dank euch keine Sorgen für die Prüfungen. Danke!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen