Technische Mechanik 2: Elastostatik

Das Kapitel Stabbeanspruchungen in unserem Online-Kurs Technische Mechanik 2: Elastostatik besteht aus folgenden Inhalten:

  1. Allgemeine Definition der Spannung
    Stabbeanspruchungen > Allgemeine Definition der Spannung
    Schnitt durch den Körper
    Unter Spannung versteht man ein Maß zur Beschreibung der Materialbeanspruchung eines Körpers. Dabei ist nicht von Interesse wie Kräfte oder Resultierende auf den Körper einwirken, sondern die lokale Wirkung innerer Kräfte. Hierzu betrachtet man die Kräfte in Bezug auf eine sehr kleine Fläche oder ein sehr kleines Volumen. Die gesamte Querschnittsfläche ist nicht Gegenstand der Untersuchung.Die äußere Belastung, die ein Bauteil erfährt, sagt ...
  2. Spannungen im Stab
    Stabbeanspruchungen > Spannungen im Stab
    Spannungen im Stab
    In diesem Kapitel werden Zugstäbe bzw. Druckstäbe behandelt. Für diese gilt ebenfalls, dass innerhalb des Stabes, welcher auf Druck oder Zug belastet wird, innere Spannungen vorhanden sind. Die Spannungen, die innerhalb des Stabes auftreten, werden durch die an diesem Stab angreifenden äußeren Zug- bzw. Druckkräfte verursacht. Ziel ist es, diese inneren Spannungen zu berechnen. Das Video wird geladen...(spannungen-im-stab) Es müssen beim Bau eines Hauses ...
  3. Prinzip von St. Venant
    Stabbeanspruchungen > Spannungen im Stab > Prinzip von St. Venant
    Prinzip von St. Venant Spannungen
    Wie bereits in den vorherigen Abschnitten kurz angedeutet, ergeben sich nahe der Lasteinleitungsstelle komplizierte Spannungsverteilungen. Das Prinzip von St. Venant besagt, dass in hinreichender Entfernung zur Lasteinleitungsstelle diese Störungen der gleichmäßigen Spannungsverteilung als abgeklungen angesehen werden können.Das Video wird geladen...(prinzip-st-venant)Hierzu soll ein Beispiel folgen, welches die Spannungsverteilung bei einem auf Zug belasteten Stab zeigt:Es werden ...
  4. Spannung im Stab (senkrechter Schnitt)
    Stabbeanspruchungen > Spannungen im Stab > Spannung im Stab (senkrechter Schnitt)
    Senkrechter Schnitt am Balken
    In diesem Abschnitt werden die Spannungen zunächst für einen geraden Stab mit konstanter Querschnittsfläche betrachtet, welcher auf Zug belastet wird. Es soll gezeigt werden, wie sich die Spannungen bei der Betrachtung von unterschiedlichen Schnittwinkeln ändern. Senkrechter SchnittMan stelle sich einen Stab vor, der durch die Zugkraft $F$ belastet wird. Der Stab besitzt eine konstante Querschnittsfläche $A$. Die Wirkungslinie der Kräfte ist die Stabachse. Die ...
  5. Spannungen im Stab (Schnitt mit Winkel)
    Stabbeanspruchungen > Spannungen im Stab > Spannungen im Stab (Schnitt mit Winkel)
    Senkrechter Schnitt am Balken
    Im vorherigen Abschnitt wurden die Spannungen im Stab bei einem senkrechten Schnitt, also ohne Winkel, untersucht. Änderungen treten erst dann auf, wenn der Schnittwinkel $\alpha \not= 0° $ wird. In diesem Kurstext soll gezeigt werden, wie sich die Spannungen bei einem Schnitt mit Winkel ändern. Hierzu vergleichen wir die Spannungen die beim einem senkrechten Schnitt $\alpha = 0°$ auftreten mit den Spannungen bei einem Schnitt mit Winkel $\alpha \not= 0°$.Spannungen ...
  6. Beispiel zu Spannungen im Stab: Konischer Stab
    Stabbeanspruchungen > Spannungen im Stab > Beispiel zu Spannungen im Stab: Konischer Stab
    Bestimmung der Normalkraft
    Konischer StabGegeben sei der obige konische Stab mit kreisförmigem Querschnitt, welcher durch die zwei Druckkräfte $F$ in der Stabachse belastet wird.Bestimme die Normalspannung $\sigma$ bei beliebigem Querschnitt senkrecht zur Stabachse!Da ein senkrechter Schnitt durchgeführt wird (Winkel 0°), wird nur die Normalspannung $\sigma_0$ auftreten. Diese ist definiert als$\sigma_0 = \frac{N}{A}$Hierbei handelt es sich allerdings um einen beliebigen Querschnitt, es soll also die allgemeine ...
  7. Beispiel zu Spannungen im Stab: Hängender Zugstab
    Stabbeanspruchungen > Spannungen im Stab > Beispiel zu Spannungen im Stab: Hängender Zugstab
    Beispiel Zugstab Freischnitt
    Anwendungsbeispiel: ZugstabZugstab Gegeben sei der obige Balken (1m breit, 10m lang), welcher an einem Stab $d = 0,15 m$ befestigt ist. Der Stab ist mittels eines Hakens an der Wand befestigt. Der Balken hat ein Eigengewicht von $F_{Balken} = 50 N$. Auf dem Balken befindet sich eine gleichmäßig verteilte Schneedecke (Flächenlast), mit $q_0 = 2 N/m^2$. Die Stabkraft soll vernachlässigt werden. Wie groß muss die Hakenkraft mindestens sein, damit diese den Balken samt ...
  8. Dehnung im Stab (konstante Dehnung)
    Stabbeanspruchungen > Dehnung im Stab > Dehnung im Stab (konstante Dehnung)
    Dehnungen im Stab
    Im Gegensatz zu Spannungen im Inneren eines Körpers, sind Dehnungen $\epsilon $ und damit verbundene Verschiebungen $ u $ kinematische Größen. Sie sind unabhängig von einwirkenden Kräften und ermöglichen lediglich Aussagen bezüglich der Veränderung der Geometrie. Dehnung im StabMan stelle sich einen elastischen Stab vor, welcher über seine gesamte Länge einen konstanten Querschnitt aufweist. Die Länge des unbelasteten ...
  9. Dehnung (Stabelement)
    Stabbeanspruchungen > Dehnung im Stab > Dehnung (Stabelement)
    Stabelement dx
    Wie bereits im vorherigen Abschnitt erwähnt, muss bei nicht konstanter Dehnung $\epsilon$ die örtliche Dehnung eines Stabes betrachtet werden. Dies tritt auf, wenn z.B. ein Stab eine veränderliche Querschnittsfläche $A$ aufweist oder aber beispielsweise Volumenkräfte längs der Stabachse auftreten. Ist dies der Fall, so wird nicht der gesamte Stab, sondern lediglich ein Stabelement betrachtet. Im Folgenden soll gezeigt werden, wie sich die Dehnung in diesem Fall herleiten ...
  10. Materialgesetz / Zugversuch
    Stabbeanspruchungen > Materialgesetz / Zugversuch
    Zugversuch
    Das Materialgesetz, auch bekannt als Stoffgesetz oder Materialmodell, ist ein physikalisches Gesetz, das Spannungen in einen direkten Zusammenhang mit den kinematischen Größen der Verzerrung bringt. Das Materialgesetz ist immer abhängig vom Material des betrachteten Körpers, aber nicht von dessen Form. Die notwendigen Festigkeitskennwerte müssen durch genormte Versuche experimentell bestimmt werden.Die folgenden Festigkeitskennwerte sind Gegenstand beinahe jeder Materialuntersuchung:Zugfestigkeit ...
  11. Spannungs-Dehnungs-Diagramm
    Stabbeanspruchungen > Materialgesetz / Zugversuch > Spannungs-Dehnungs-Diagramm
    Spannungs-Dehnungs-Diagramm
    Das Ergebnis des Zugversuchs (vorheriger Abschnitt) kann innerhalb eines Spannungs-Dehnungs-Diagramms veranschaulicht werden. Das Spannungs-Dehnungs-Diagramm dient hauptsächlich der Charakterisierung eines Materials hinsichtlich Festigkeit, Plastizität und Elastizität. Es hat sich dabei durchgesetzt, dass die Spannung [in $\frac{N}{mm^2} $] über die Dehnung [dimensionslos] aufgetragen wird. Das bedeutet, dass die Spannung $\sigma$ auf der Ordinate aufgetragen ...
  12. Hookesches Gesetz
    Stabbeanspruchungen > Materialgesetz / Zugversuch > Hookesches Gesetz
    Linear-elastischer Bereich (Hookesche Gerade)
    Mittels von Zugversuchen wird der Zusammenhang zwischen Dehnung $\epsilon$ und Spannung $\sigma$ untersucht und in einem Spannungs-Dehnungs-Diagramm dargestellt (vorheriger Abschnitt). Viele Werkstoffe zeigen einen proportionalen Verlauf von Spannung und Dehnung, das heißt, dass die Dehnung mit der Spannung im gleichen Verhältnis (proportional) wächst. Zieht man beispielsweise ein Gummiband auseinander, so sieht man, dass mit zunehmender Spannung auch die Dehnung ($\triangle ...
  13. Wärmedehnungen
    Stabbeanspruchungen > Wärmedehnungen
    Wärmedehnungen am Zugstab Beispiel
    Ähnlich wie bei einer Belastung durch eine äußere Zugkraft, dehnt sich ein Körper unter Wärmeeinfluss aus. Alle Stoffe ändern ihr Volumen in Abhängigkeit von der Temperatur. Üblicherweise dehnt sich ein Körper beim Erwärmen in alle Richtungen gleich aus (es gibt Ausnahmen). Mittels Experimenten hat man herausgefunden, dass bei gleichförmiger Erwärmung von Stäben, die thermische Dehnung $\epsilon_{th}$ proportional zur Temperaturänderung ...
  14. Querdehnungen
    Stabbeanspruchungen > Verformungen quer zur Stabachse > Querdehnungen
    In der bisherigen Annahme wurde davon ausgegangen, dass Dehnungen am Stab nur in Längsrichtung auftreten. Um jedoch die Belastung eines Stabes vollständig beschreiben zu können, müssen auch Querdehnungen berücksichtigt werden. Um diese formal richtig zu beschreiben, empfiehlt es sich ein Koordinatensystem mit drei Dimensionen in den Stab zu legen. Ferner sollten sowohl die Stabachse, als auch die $x$-Achse eine Gerade bilden. Hieraus lassen sich dann vorab die Normalspannung ...
  15. Volumendehnungen
    Stabbeanspruchungen > Verformungen quer zur Stabachse > Volumendehnungen
    Volumendehnung
    Bei der Verformung eines Körpers treten für gewöhnlich Änderungen im Volumen auf. Die Volumendehnung $\epsilon $ oder auch Eulersche Dilatation eines Körpers, der mit Normalspannungen in alle drei Raumrichtungen beansprucht wird, ist die Summe der Dehnungen in die besagten Raumrichtungen und hat daher die Form:$\epsilon = \epsilon_{x} + \epsilon_{y} + \epsilon_{z}$.Berechnung der VolumendehnungFür einen Zugstab ergibt sich bei der Berechnung der Volumendehnung folgendes:$\epsilon ...
  16. Schubverformungen
    Stabbeanspruchungen > Verformungen quer zur Stabachse > Schubverformungen
    Infolge von Schubbelastungen treten je nach Orientierung der Schnittfläche Winkeländerungen und infolgedessen auch Schubverformungen auf, die auch Schiebungen genannt werden. Der Änderungswinkel $\gamma $ wird als Gleitwinkel bezeichnet.Hookesches Gesetz für SchubverformungDer oben genannte Zusammenhang von Schubspannung $\tau $ und der Schubverformung $\gamma $ lässt sich durch das Hookesche Gesetz für Schubverformung beschreiben:Hookesche Gesetz für Schubverformung $\tau ...
  17. Differentialgleichung eines Stabes
    Stabbeanspruchungen > Differentialgleichung eines Stabes
    Normalkräfte am Stabelement
    In den vorherigen Kapiteln sind die Spannungen und Verformungen aufgezeigt worden, welche durch äußere Belastungen an einem Stab auftreten können. In diesem Abschnitt soll die Differentialgleichung eines Stabes aufgezeigt werden mittels welcher man die Verschiebung berechnen kann.Um Spannungen und Verformungen innerhalb eines Stabes zu bestimmen, kann auf die drei Gleichungen zurückgegriffen werden:1. Die Gleichgewichtsbedingung2. Die kinematische Beziehung3. Das Elastizitätsgesetz.GleichgewichtsbedingungDie ...
  18. Zusammenfassung der Grundgleichungen für den Stab
    Stabbeanspruchungen > Zusammenfassung der Grundgleichungen für den Stab
    In diesem Abschnitt werden nochmals alle bereits vorgestellten Gleichungen für den Stab aufgeführt.Die Anwendung der hier aufgestellten Gleichungen für den Stab werden in den folgenden Abschnitten mit Hilfe von Übungsbeispielen aufgezeigt.Bestimmung der Normalspannung und DehnungHat man aus den Gleichgewichtsbedingungen die Normalkraft berechnet, so kann daraus die Normalspannung $\sigma$ bestimmt werden:$\sigma = \frac{N(x)}{A}$.       NormalspannungMithilfe ...
  19. Statisch bestimmte Stabwerke (Einzelstab)
    Stabbeanspruchungen > Statisch bestimmte Stabwerke > Statisch bestimmte Stabwerke (Einzelstab)
    Beispiel: hängender Stab
    Bei statisch bestimmten Stabwerken ist es immer möglich die äußere Belastung und die Normalkraft $N(x)$ aus den Gleichgewichtsbedingungen zu bestimmen. Eine Temperaturänderung verursacht bei statisch bestimmten Problemen lediglich Wärmedehnungen und keine zusätzlichen Spannungen. Zur Lösung statisch bestimmter Probleme werden die Formeln aus dem voherigen Abschnitt herangezogen. Anwendungsbeispiel: Statisch bestimmte StabwerkeBeispiel: hängender ...
  20. Beispiel: Belastung durch Kraft am Stabende (ohne Gewichtskraft)
    Stabbeanspruchungen > Statisch bestimmte Stabwerke > Statisch bestimmte Stabwerke (Einzelstab) > Beispiel: Belastung durch Kraft am Stabende (ohne Gewichtskraft)
    Beispiel: Normalkraft und Stabverlängerung
    In diesem Abschnitt soll das Beispiel aus dem vorangegangenem Abschnitt nochmals aufgeführt werden. Diesmal handelt es sich allerdings um einen gewichtslosen Balken mit einer Kraft $G = 10N$, welche am Stabende angreift:Beispiel: Normalkraft und Stabverlängerung In der obigen Grafik ist der eingespannte Stab zu sehen. Diesmal soll die Gewichtskraft des Balkens so klein sein, dass diese vernachlässigt werden kann. Am Stabende greift eine Kraft $G = 10 N$ ...
  21. Beispiel: Belastung durch Kraft am Stabende (mit Gewichtskraft)
    Stabbeanspruchungen > Statisch bestimmte Stabwerke > Statisch bestimmte Stabwerke (Einzelstab) > Beispiel: Belastung durch Kraft am Stabende (mit Gewichtskraft)
    Beispiel Normalkraft und Stabverlängerung 2
    In diesem Abschnitt soll nun ein Balken mit einem Eigengewicht von $G = 10 N$ und einer am Stabende angreifenden Kraft von $F = 10 N$ betrachtet werden:Beispiel Normalkraft und Stabverlängerung 2 In der obigen Grafik ist ein eingespannter Stab aus Blei ($E = 19 \frac{kN}{mm^2}$). Der Stab besitzt ein Eigengewicht von $G = 10 N$ und wird am Ende durch eine Kraft von $F = 10 N$ belastet. Die Länge des Stabes betrage $l = 20 cm$ und die Querschnittsfläche sei ...
  22. Statisch bestimmte Stabwerke (Stabzweischlag)
    Stabbeanspruchungen > Statisch bestimmte Stabwerke > Statisch bestimmte Stabwerke (Stabzweischlag)
    Beispiel: Stabzweischlag
    Die im vorherigen Abschnitt gezeigten Methoden zur Ermittlung von Spannungen und Verformungen können auch auf statisch bestimmte Stabwerke mit mehreren Stäben übertragen werden. Es wird davon ausgegangen, dass nur sehr kleine Stablängenänderungen $\triangle l$ auftreten, so dass die Verschiebungen der Stäbe ebenfalls sehr klein ausfallen. Das bedeutet, dass die Geometrie des Stabsystems durch die Belastung nur wenig verändert wird und somit die Stabkräfte am ...
  23. Statisch unbestimmte Stabwerke (Einzelstab)
    Stabbeanspruchungen > Statisch unbestimmte Stabwerke > Statisch unbestimmte Stabwerke (Einzelstab)
    Statisch unbestimmter Stab
    In diesem Abschnitt geht es um statisch unbestimmte Probleme. Diese lassen es nicht mehr zu, dass die Normalkraft $ N(x) $ eines Stabes allein aus der Gleichgewichtsbedingung heraus bestimmt werden kann. Die neue Gegebenheit erfordert eine Betrachtung aller Gleichungen gleichzeitig. Auch Wärmespannungen können durch Temperaturänderungen auftreten und müssen berücksichtigt werden. Zum besseren Verständnis folgt nun ein Anwendungsbeispiel:AnwendungsbeispielGegeben ...
  24. Statisch unbestimmte Stabwerke (Dreistab)
    Stabbeanspruchungen > Statisch unbestimmte Stabwerke > Statisch unbestimmte Stabwerke (Dreistab)
    Zusammenhang der Stablängen
    Es soll im Folgenden das Problem der statischen Unbestimmtheit anhand eines Dreistab-Problems (auch: Naviersche Problem) gelöst werden. Hierzu werden die folgenden drei Stäbe betrachtet mit dem Winkel $\alpha$. Der Stab $S_1$ hat dieselbe Länge wie der Stab $S_3$, also $l_1 = l_3$. An diese drei Stäbe greift im Knoten $K$ die Kraft $F$ an. Die Dehnsteifigkeit aller Stäbe sei gleich, so dass gilt $E_1A_1 = E_2A_2 = E_3A_3 = EA$. Dreistab-Problem GleichgewichtsbedingungenZunächst ...
Technische Mechanik 2: Elastostatik
  • 110 Texte mit 458 Bildern
  • 139 Übungsaufgaben
  • und 26 Videos



einmalig 39,00 Euro / kein Abo
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG