ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Operations Research 2
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse

Grafisches Verfahren

WebinarTerminankündigung:
 Am 20.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Operations Research) Primaler Simplexalgorithmus
- Das 60-minütige Gratis-Webinar behandelt den primalen Simplexalgorithmus.
[weitere Informationen] [Terminübersicht]

Das im ersten Kapitel Wiederholung OR 1 eingeführte lineare Programm und die dort vorgestellte grafische Lösung des Maximierungsproblems hatte zum Ergebnis eine ganzzahlige Lösung. Dies ist allerdings nicht immer gegeben, denn häufig werden bei linearen Programme nicht ganzzahlige Lösungen ermittelt. In diesem Abschnitt soll die grafische Lösung eines Maximierungsproblems im Hinblick auf die Ganzzahligkeitsbedingung aufgezeigt werden.

Die grafischen Lösung von linearen Optimierungsproblemen kann nur auf Probleme mit $n \le 3$ Variablen angewandt werden. Bereits bei $n = 3$ Variablen ist es allerdings schwierig, das Problem grafisch zu lösen. Im Folgenden wird ein lineares Maximierungsproblem mit $n = 2$ Variablen betrachtet. Die grafische Lösung erfolgt analog zu der im Abschnitt Grafische Lösung des Maximierungsproblems allerdings dürfen hier nur die ganzzahligen Punkte innerhalb des zulässigen Bereichs betrachtet werden.

Zur Veranschaulichung wird das folgenden Maximierungsproblem betrachtet:

$f(x_1, x_2) = 2x_1 +  x_2$    $\rightarrow$   max!

u.d.N.

(1) $3x_1 + 2x_2 \le 6 $   

(2) $5x_1 + 2 x_2 \le 8$    


$x_1, x_2 \ge 0$    und ganzzahlig


Als Bedingung soll neben der Nichtnegativitätsbedingung $x \ge 0$ zusätzlich die Ganzzahligkeit für die Entscheidungsvariablen $x_1$ und $x_2$ gegeben sein.

Die grafische Lösung ergibt sich dann wie folgt:

Ganzzahlige Optimierung grafische Lösung

In der obigen Grafik sind die beiden Restriktionen eingezeichnet. Die grüne Linien spiegelt die Restrtiktion (1) wieder und die blaue Linie die Restriktion (2). Die gestrichelte Linie ist die Zielfunktion, welche bei der grafischen Lösung solange parallel zu sich selbst verschoben wird, bis diese den Rand des zulässigen Bereiches erreicht. Dort befindet sich bei der linearen Programmierung dann die optimale Lösung, also bei $x = (1, 1,5)$ (roter Punkt). Allerdings stellt dies keine ganzzahlige Lösung dar. Da aber in der obigen Formulierung des Modells eine ganzzahlige Lösung gefordert wird, ist die ermittelte Lösung unzulässig. Es werden nun alle zulässigen Lösungen innerhalb des obigen Bereichs markiert (siehe schwarze Punkte) und dann der Punkt gewählt, welcher die Zielfunktion maximiert. Dies erreicht man durch Parallelverschiebung der Zielfunktion bis zum letztmöglichen Punkt. In diesem Beispiel kommen dafür zwei Punkte in Frage, zum einen der Punkt $(0,3)$ und zum anderen der Punkt $(1,1)$. Für beide wird der Zielfunktionswert:

$f(x_1, x_2) = 3$ 

erzielt. Alle anderen Punkte führen zu einem kleineren Zielfunktionswert. Die optimale Lösung liegt also bei diesen beiden Punkten für das gegebene Problem aufgrund der Ganzzahligkeitsbedingung der Entscheidungsvariablen. 

Multiple-Choice
Gegeben sei das folgende ganzzahlige Optimierungsproblem:

$x_1 + 2x_2$  max!

udN

$x_1 + 3x_2 \le 12$
$2x_1 + 4x_2 \le 20$

$x_1, x_2 \ge 0$ und ganzzahlig.

Welches der folgenden Grafiken zeigt das obige Optimierungsproblem?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Vorstellung des Online-Kurses Operations Research 2Operations Research 2
Dieser Inhalt ist Bestandteil des Online-Kurses

Operations Research 2

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Operations Research 2: Überblick
    • Einleitung zu Operations Research 2: Überblick
  • Grundlagen des Operations Research 1
    • Einleitung zu Grundlagen des Operations Research 1
    • Definition: Lineares Programm
    • Standardform: Maximierungsproblem
      • Einleitung zu Standardform: Maximierungsproblem
      • Grafische Lösung des Maximierungsproblems
    • Primaler Simplexalgorithmus
      • Einleitung zu Primaler Simplexalgorithmus
      • Lösung des Maximierungsproblems mittels primalen Simplexalgorithmus
    • Dualer Simplexalgorithmus
    • Umformung in die Standardform
    • Umformung in die Normalform
  • Ganzzahlige Optimierung
    • Einleitung zu Ganzzahlige Optimierung
    • Grafisches Verfahren
    • Verfahren von Gomory
      • Einleitung zu Verfahren von Gomory
      • Beispiel: Verfahren von Gomory
    • Branch-and-Bound-Verfahren
      • Einleitung zu Branch-and-Bound-Verfahren
      • Branch-and-Bound: Maximierungsprobleme
        • Einleitung zu Branch-and-Bound: Maximierungsprobleme
        • Branch-and-Bound am Maximierungsproblem
          • Einleitung zu Branch-and-Bound am Maximierungsproblem
          • Festlegung der oberen/unteren Schranke, Prioritätenfestlegung
          • Entscheidungsbaum für das Maximierungsproblem
          • Beispiel: Branch and Bound am Maximierungsproblem
        • Branch-and-Bound am Maximierungsproblem (optimale Lösung)
          • Einleitung zu Branch-and-Bound am Maximierungsproblem (optimale Lösung)
          • Beispiel: Branch and Bound am Maximierungsproblem (optimale Lösung)
      • Branch-and-Bound: Minimierungsprobleme
        • Einleitung zu Branch-and-Bound: Minimierungsprobleme
        • Branch-and-Bound am Minimierungsproblem
          • Einleitung zu Branch-and-Bound am Minimierungsproblem
          • Festlegung der unteren/oberen Schranke, Prioritätenfestlegung
          • Entscheidungsbaum für das Minimierungsproblem
          • Beispiel: Branch and Bound am Minimierungsproblem
        • Branch-and-Bound am Minimierungsproblem (optimale Lösung)
          • Einleitung zu Branch-and-Bound am Minimierungsproblem (optimale Lösung)
          • Beispiel: Branch and Bound am Minimierungsproblem (optimale Lösung) 1
          • Beispiel: Branch and Bound am Minimierungsproblem (optimale Lösung) 2
          • Beispiel: Branch and Bound am Minimierungsproblem (optimale Lösung) 3
      • Branch-and-Bound: Knapsack-Problem
      • Branch-and-Bound: Knapsack-Problem (Alternative)
    • Verfahren der vorsichtigen Annäherung
  • Kombinatorische Optimierung
    • Einleitung zu Kombinatorische Optimierung
    • Traveling-Salesman-Problem
      • Einleitung zu Traveling-Salesman-Problem
      • Vollständige Enumeration
        • Einleitung zu Vollständige Enumeration
        • Beispiel: Vollständige Enumeration (Reduktion der Matrix)
        • Beispiel: Vollständige Enumeration (Anwendung des Verfahrens)
      • Heuristische Verfahren
        • Einleitung zu Heuristische Verfahren
        • Verfahren des besten Nachfolgers
          • Einleitung zu Verfahren des besten Nachfolgers
          • Verfahren des besten Nachfolgers (Ausgangsmatrix)
          • Verfahren des besten Nachfolgers (reduzierte Matrix)
        • Verfahren der sukzessiven Einbeziehung von Stationen
          • Einleitung zu Verfahren der sukzessiven Einbeziehung von Stationen
          • Einbeziehung von Stationen (Ausgangsmatrix)
      • Entscheidungsbaumverfahren
        • Einleitung zu Entscheidungsbaumverfahren
        • Begrenzte Enumeration
        • Branch-and-Bound Verfahren am Traveling-Salesman-Problem
          • Einleitung zu Branch-and-Bound Verfahren am Traveling-Salesman-Problem
          • Branch-and-Bound (TSP): 1. Iteration
          • Branch-and-Bound (TSP): Weitere Iterationen
    • Fertigungsablaufplanung
      • Einleitung zu Fertigungsablaufplanung
      • Flow-Shop-Probleme
      • Johnson-Algorithmus
  • Nichtlineare Optimierung
    • Grundlagen der nichtlinearen Optimierung
      • Einleitung zu Grundlagen der nichtlinearen Optimierung
      • Konkave und konvexe Funktionen
        • Einleitung zu Konkave und konvexe Funktionen
        • Beispiel: Nachweis konvexer/konkaver Funktionen auf direktem Weg
        • Beispiel: Nachweis konvexer/konkaver Funktionen über Differenzierbarkeit
    • Nichtlineare Optimierung unter Nebenbedingungen
      • Einleitung zu Nichtlineare Optimierung unter Nebenbedingungen
      • Methode der zulässigen Richtung
        • Einleitung zu Methode der zulässigen Richtung
        • Beispiel: Methode der zulässigen Richtungen (1. Iteration)
        • Beispiel: Methode der zulässigen Richtungen (2. Iteration)
        • Beispiel: Methode der zulässigen Richtungen (3. Iteration)
  • 61
  • 7
  • 25
  • 64
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Phillipp Grünewald

    Phillipp Grünewald

    "ingenieurkurse.de hat mir besonders bei den Mathe-Themen geholfen. Super Erklärungen!"
  • Martina Pfeiffer

    Martina Pfeiffer

    "Klasse für den Einstieg ins Ingenieurstudium."
  • Marcel Eberhardt

    Marcel Eberhardt

    "Ich mache mir dank euch keine Sorgen für die Prüfungen. Danke!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen