ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Operations Research 2
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse

Dualer Simplexalgorithmus

WebinarTerminankündigung:
 Am 20.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Operations Research) Primaler Simplexalgorithmus
- Das 60-minütige Gratis-Webinar behandelt den primalen Simplexalgorithmus.
[weitere Informationen] [Terminübersicht]

Methode

Voraussetzung für die Anwendung des dualen Simplex-Verfahrens:

  1. Es muss die Standardform vorliegen (Maximierungsproblem, Kleiner/Gleich-Nebenbedingung, Nichtnegativitätsbedingung)

  2. Die Standardform muss dann in die Normalform überführt werden (Gleichheitsbedingung) mittels Einführung von Schlupfvariablen.

  3. Es liegen negative Koeffizienten auf der Rechten-Seite der Nebenbedingungen vor ($b_i \le 0$).

Das duale Simplexverfahren wird angewandt, wenn das Optimierungsproblem in Standardform vorliegt, aber negative Werte auf der rechten Seite der Nebenbedingungen gegeben sind. Dann nämlich existiert keine zulässige Ausgangslösung. Der duale Simplex wird also angewandt um eine zulässige Ausgangslösung zu bestimmen. Ist diese bestimmt worden kann der primale Simplexalgorithmus angewandt werden um eine optimale Lösung zu bestimmen. 

Merke

Der duale Simplexalgorithmus wird angewandt, wenn die Werte der rechten Seite der Nebenbedingungen negativ sind. Der primale Simplexalgorithmus wird angewandt, wenn alle Werte der rechten Seite positiv sind. Der duale Simplexalgorithmus führt zu einer zulässigen Ausgangslösung, der primale Simplexalgorithmus zu einer optimalen Lösung. Nach Anwendung des dualen Simplexalgorithmus kann der primale Simplexalgorithmus angewandt werden, um eine optimale Lösung zu erhalten. 

Das Tableau wird analog zum primalen Simplexalgorithmus aufgestellt. Beachtet werden muss in jedem Fall, dass die Werte der Zielfunktion mit den umgekehrten Vorzeichen berücksichtigt werden müssen. Es wird im folgenden aufgezeigt wie die Wahl der Pivotspalte und der Pivotzeile erfolgt. Diese Vorgehensweise unterscheidet sich von der des primalen Simplexalgorithmus.

Wahl der Pivotspalte, Pivotzeile und des Pivotelements

Nachdem das Tableau für das lineare Optimierungsproblem wie im vorherigen Abschnitt aufgestellt worden ist, soll nun die erste Iteration für das duale Simplexverfahren durchgeführt werden. Für jede Iteration müssen die folgenden Schritte durchgeführt werden. Im Gegensatz zum primalen Simplexverfahren beginnt das duale Simplexverfahren mit Wahl der Pivotzeile:

  1. Wahl der Pivotzeile s: Existiert kein $b_i < 0$, so liegt bereits eine zulässige Basislösung vor. Es wird dann das duale Simplexverfahren abbgebrochen und mit dem primale Simplexverfahren fortgesetzt.

    Ansonsten wird diejenige Zeile $s$ mit dem kleinsten negativen Wert der rechten Seite als Pivotzeile gewählt. Sind mehrere Zeilen mit kleinstem negativen Wert gegeben, so kann unter diesen eine beliebige Zeile ausgewählt werden. 

  2. Wahl der Pivotspalte t: Sind in der Pivotszeile aus 1. alle $a_{sj} > 0$, so existiert für das Problem keine zulässige Basislösung. Das gesamte Verfahren wird dann abgebrochen. 

    Ansonsten wird die untere Zeile (Zielfunktionszeile) für alle Elemente $a_{sj} < 0$ der Pivotzeile betrachtet und diejenige Pivotspalte ausgewählt, für die gilt $max\frac{c_j}{a_{sj}}$. Dort wo sich die Pivotspalte und die Pivotzeile schneiden, liegt das Pivotelement $a_{st}$.

  3. Nachdem die Pivotzeile $s$ und die Pivotspalte $t$ sowie das Pivotelement $a_{st}$ bestimmt worden sind, wird nun in einem nächsten Schritt die Basisvariable der Pivotzeile mit der Nichtbasisvarbiablen der Pivotspalte getauscht und ein neues Tableau aufgestellt.

Die Simplexschritte sind hier analog zu denen des primalen Simplexalgorithmus.

Das Verfahren endet, wenn die Werte der rechten Seite alle positiv sind. Dann liegt eine zulässige Ausgangslösung vor. 

Merke

Der duale und der primale Simplexalgorithmus unterscheiden sich dahingehend, dass diese eine andere Vorgehensweise bei der Wahl der Pivotspalte und Pivotzeile aufweisen.

Multiple-Choice
Wie ist die Vorgehensweise beim dualen Simplexalgorithmus?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Vorstellung des Online-Kurses Operations Research 2Operations Research 2
Dieser Inhalt ist Bestandteil des Online-Kurses

Operations Research 2

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Operations Research 2: Überblick
    • Einleitung zu Operations Research 2: Überblick
  • Grundlagen des Operations Research 1
    • Einleitung zu Grundlagen des Operations Research 1
    • Definition: Lineares Programm
    • Standardform: Maximierungsproblem
      • Einleitung zu Standardform: Maximierungsproblem
      • Grafische Lösung des Maximierungsproblems
    • Primaler Simplexalgorithmus
      • Einleitung zu Primaler Simplexalgorithmus
      • Lösung des Maximierungsproblems mittels primalen Simplexalgorithmus
    • Dualer Simplexalgorithmus
    • Umformung in die Standardform
    • Umformung in die Normalform
  • Ganzzahlige Optimierung
    • Einleitung zu Ganzzahlige Optimierung
    • Grafisches Verfahren
    • Verfahren von Gomory
      • Einleitung zu Verfahren von Gomory
      • Beispiel: Verfahren von Gomory
    • Branch-and-Bound-Verfahren
      • Einleitung zu Branch-and-Bound-Verfahren
      • Branch-and-Bound: Maximierungsprobleme
        • Einleitung zu Branch-and-Bound: Maximierungsprobleme
        • Branch-and-Bound am Maximierungsproblem
          • Einleitung zu Branch-and-Bound am Maximierungsproblem
          • Festlegung der oberen/unteren Schranke, Prioritätenfestlegung
          • Entscheidungsbaum für das Maximierungsproblem
          • Beispiel: Branch and Bound am Maximierungsproblem
        • Branch-and-Bound am Maximierungsproblem (optimale Lösung)
          • Einleitung zu Branch-and-Bound am Maximierungsproblem (optimale Lösung)
          • Beispiel: Branch and Bound am Maximierungsproblem (optimale Lösung)
      • Branch-and-Bound: Minimierungsprobleme
        • Einleitung zu Branch-and-Bound: Minimierungsprobleme
        • Branch-and-Bound am Minimierungsproblem
          • Einleitung zu Branch-and-Bound am Minimierungsproblem
          • Festlegung der unteren/oberen Schranke, Prioritätenfestlegung
          • Entscheidungsbaum für das Minimierungsproblem
          • Beispiel: Branch and Bound am Minimierungsproblem
        • Branch-and-Bound am Minimierungsproblem (optimale Lösung)
          • Einleitung zu Branch-and-Bound am Minimierungsproblem (optimale Lösung)
          • Beispiel: Branch and Bound am Minimierungsproblem (optimale Lösung) 1
          • Beispiel: Branch and Bound am Minimierungsproblem (optimale Lösung) 2
          • Beispiel: Branch and Bound am Minimierungsproblem (optimale Lösung) 3
      • Branch-and-Bound: Knapsack-Problem
      • Branch-and-Bound: Knapsack-Problem (Alternative)
    • Verfahren der vorsichtigen Annäherung
  • Kombinatorische Optimierung
    • Einleitung zu Kombinatorische Optimierung
    • Traveling-Salesman-Problem
      • Einleitung zu Traveling-Salesman-Problem
      • Vollständige Enumeration
        • Einleitung zu Vollständige Enumeration
        • Beispiel: Vollständige Enumeration (Reduktion der Matrix)
        • Beispiel: Vollständige Enumeration (Anwendung des Verfahrens)
      • Heuristische Verfahren
        • Einleitung zu Heuristische Verfahren
        • Verfahren des besten Nachfolgers
          • Einleitung zu Verfahren des besten Nachfolgers
          • Verfahren des besten Nachfolgers (Ausgangsmatrix)
          • Verfahren des besten Nachfolgers (reduzierte Matrix)
        • Verfahren der sukzessiven Einbeziehung von Stationen
          • Einleitung zu Verfahren der sukzessiven Einbeziehung von Stationen
          • Einbeziehung von Stationen (Ausgangsmatrix)
      • Entscheidungsbaumverfahren
        • Einleitung zu Entscheidungsbaumverfahren
        • Begrenzte Enumeration
        • Branch-and-Bound Verfahren am Traveling-Salesman-Problem
          • Einleitung zu Branch-and-Bound Verfahren am Traveling-Salesman-Problem
          • Branch-and-Bound (TSP): 1. Iteration
          • Branch-and-Bound (TSP): Weitere Iterationen
    • Fertigungsablaufplanung
      • Einleitung zu Fertigungsablaufplanung
      • Flow-Shop-Probleme
      • Johnson-Algorithmus
  • Nichtlineare Optimierung
    • Grundlagen der nichtlinearen Optimierung
      • Einleitung zu Grundlagen der nichtlinearen Optimierung
      • Konkave und konvexe Funktionen
        • Einleitung zu Konkave und konvexe Funktionen
        • Beispiel: Nachweis konvexer/konkaver Funktionen auf direktem Weg
        • Beispiel: Nachweis konvexer/konkaver Funktionen über Differenzierbarkeit
    • Nichtlineare Optimierung unter Nebenbedingungen
      • Einleitung zu Nichtlineare Optimierung unter Nebenbedingungen
      • Methode der zulässigen Richtung
        • Einleitung zu Methode der zulässigen Richtung
        • Beispiel: Methode der zulässigen Richtungen (1. Iteration)
        • Beispiel: Methode der zulässigen Richtungen (2. Iteration)
        • Beispiel: Methode der zulässigen Richtungen (3. Iteration)
  • 61
  • 7
  • 25
  • 64
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Phillipp Grünewald

    Phillipp Grünewald

    "ingenieurkurse.de hat mir besonders bei den Mathe-Themen geholfen. Super Erklärungen!"
  • Martina Pfeiffer

    Martina Pfeiffer

    "Klasse für den Einstieg ins Ingenieurstudium."
  • Marcel Eberhardt

    Marcel Eberhardt

    "Ich mache mir dank euch keine Sorgen für die Prüfungen. Danke!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen