ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Anorganische Chemie
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Donator-Akzeptor-Prinzip > Redox-Chemie:

Elektrochemie

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Zum Ende dieses Kurses möchten wir uns nun der Elektrochemie zuwenden. Die Elektrochemie basiert auf technisch angewandten Redoxprozessen. Eingesetzt werden hierbei Redoxprozesse, die freiwillig ablaufen und keine äußere Energiezufuhr benötigen. Ein Prozess wie die Elektrolyse basiert zwar auch auf technisch genutzten Redoxvorgängen, benötigt aber Strom um funktionieren zu können. 

Ein chemischer Vorgang, der ohne Energiezufuhr abläuft ist das Rosten von Eisen, wie in der nachfolgenden Abbildung dargestellt:

Komplettes Rosten
Komplettes Rosten

Ein bekanntes Experiment aus der Elektrochemie ist der Versuch bei dem ein Eisenstück $ Fe (s) $ in eine Kupfersulfat-Lösung $ CuSO_4 $ getaucht wird. Was dabei passiert ist in der nachfolgenden Abbildung dargestellt. 

Versuchsablauf
Versuchsablauf

Bei diesem Versuch liegt eine leichtbläuliche  Kupfersulfatlösung vor und sobald das Eisenstück in die Lösung getaucht wird, verliert die Lösung allmählich an Farbintensität und auf dem Eisenstück bildet sich ein rotbrauner Belag.  Die Ursache hierfür liegt darin, dass die farbegebenden Kupferionen $ Cu^{2+ }$ in der Lösung weniger werden und sich dann als elementares Kufer $ Cu $ auf dem Eisenstück $ Fe $ ablagern. Die Besonderheit dieser Reaktion liegt darin, dass keine Aktivierungs- oder Prozessenergie erforderlich ist. Der gesamte Prozess läuft gänzlich freiwillig ab.  

Die zugehörige Reaktionsgleichung für diesen Versuch ist:

Methode

Kupferraffination: $ Cu^{2+} + 2 e^- \rightleftharpoons Cu $ 

Da neben der Lösung nur das Eisenstück vorliegt, muss letzteres als Elektronenlieferant fungieren. Daher muss eine Oxidation von Eisenatomen aus dem Eisenstück zu Eisenionen $ F2^{2+} $  stattfinden, welche in die Lösung diffundieren: 

Methode

$ Fe \rightleftharpoons F2^{2+} + 2e^- $

Dieser Vorgang hat zwei Effekte:

  1. Es werden Elektronen für die Reduktion der Kupferionen geliefert.
  2. Einer negativen Aufladung der Lösung durch das Reduzieren der positiv geladenen Kupferionen wird entgegen gewirkt.

Der Grund hierfür liegt in der nachfolgenden Ursache:

Merke

In der Lösung befinden sich Sulfationen mit zwei negativen Ladungen $ SO_4^{2-} $ und die Eisenionen $ Fe^{2+} $ heben deren Wirkung auf, Stichwort: Neutralisieren.  

Wie sich mit diesem Versuch ein elektrischer Strom nachweisen lässt erfahren Sie im kommenden Kurstext zum Thema Galvanische Zelle

Vorstellung des Online-Kurses Anorganische ChemieAnorganische Chemie
Dieser Inhalt ist Bestandteil des Online-Kurses

Anorganische Chemie

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einführung in die Anorganische Chemie
    • Einleitung zu Einführung in die Anorganische Chemie
  • Grundlagen der Chemie
    • Einleitung zu Grundlagen der Chemie
    • Definition Stoff
    • Homogene und heterogene Stoffe
    • Definitionen der anorganischen Chemie
    • Aggregatzustände und deren Änderung
    • Phasendiagramme
      • Einleitung zu Phasendiagramme
      • Beispiel: Phasendiagramm Wasser, Kohlendioxid
    • Systemkomponenten
  • Aggregatzustände
    • Der gasförmige Zustand
      • Einleitung zu Der gasförmige Zustand
      • Ideales Gas und spezifische Gaskonstante
      • Thermische Zustandsgleichung, universelle Gaskonstante
        • Einleitung zu Thermische Zustandsgleichung, universelle Gaskonstante
        • Beispiel: Thermische Zustandsgleichung idealer Gase
        • Beispiel 2: Thermische Zustandsgleichung idealer Gase
        • Beispiel 3: Thermische Zustandsgleichung idealer Gase
      • Gesetze
        • Einleitung zu Gesetze
        • Gesetz von Boyle und Mariotte
        • Gesetz von Gay-Lussac
        • Gesetz von Amontons
        • Beispiel: Goethebarometer
    • Der flüssige Zustand
    • Der feste Zustand
      • Einleitung zu Der feste Zustand
      • Der kristalline Zustand
        • Einleitung zu Der kristalline Zustand
        • Gittertypen nach Pearson
        • Sonderfall Glas
          • Einleitung zu Sonderfall Glas
          • Chemische Einteilung von Gläsern
  • Elemente des Periodensystems
    • Einleitung zu Elemente des Periodensystems
    • Atomaufbau und Elementarteilchen
    • Schalenmodell, Bohrsches Atommodell
    • Orbitalmodell
      • Einleitung zu Orbitalmodell
      • Nebenquantenzahlen
        • Einleitung zu Nebenquantenzahlen
        • Magnetquantenzahl, Spinquantenzahl
    • Periodensystem der Elemente
      • Einleitung zu Periodensystem der Elemente
      • Hauptgruppen des PSE
        • Einleitung zu Hauptgruppen des PSE
        • 8. Hauptgruppe des PSE, Edelgase
        • 7. Hauptgruppe des PSE, Halogene
        • 6. Hauptgruppe des PSE, Chalkogene
        • 5. Hauptgruppe des PSE, Stickstoffgruppe
        • 4. Hauptgruppe des PSE, Kohlenstoffgruppe
        • 3. Hauptgruppe des PSE, Borgruppe
        • 2. Hauptgruppe des PSE, Erdalkalimetalle
        • 1. Hauptgruppe des PSE, Alkalimetalle
      • Nebengruppen des PSE
      • Metalle und Nichtmetalle
    • Stoffeigenschaften
      • Einleitung zu Stoffeigenschaften
      • Elektronegativität
      • Ionisierungsenergie
      • Elektronenaffinität
  • Chemisches Rechnen, Grundrechenarten
    • Einleitung zu Chemisches Rechnen, Grundrechenarten
    • Stoffmenge, Molare Masse, Konzentration
    • Chemische Reaktionen, Reaktionsgleichung, stöchiometrische Zahl
    • Gesetze der Chemie
    • Beispiel zum Aufstellen einer Reaktionsgleichung
    • Reaktionsenergie, Reaktionsenthalpie, Satz von Hess
    • Chemisches Gleichgewicht
      • Einleitung zu Chemisches Gleichgewicht
      • Reaktionsrate und Reaktionsgeschwindigkeit
      • Gleichgewichtskonstante und Gleichgewichtslage
      • Dynamisches Gleichgewicht
      • Einflussfaktoren des Gleichgewichts
      • Prinzip nach le Chatelier, Prinzip vom kleinsten Zwang
    • Chemie in Industriemaßstäben
      • Einleitung zu Chemie in Industriemaßstäben
      • Haber-Bosch-Verfahren, Ammoniaksynthese
      • Ostwaldverfahren, Gewinnung von Salpetersäure
      • Kontaktverfahren, Gewinnung von Schwefelsäure
  • Bindungsarten, Bindungsstärke und Bindungslänge
    • Einleitung zu Bindungsarten, Bindungsstärke und Bindungslänge
    • Schreibweise nach Lewis, Bindungsbildung mit Valenzelektronen
    • Ionenbindung, heteropolare Bindung
    • Atombindung, kovalente Bindung
      • Einleitung zu Atombindung, kovalente Bindung
      • Wertigkeit einer kovalenten Bindung
    • Metallbindungen
    • Wasserstoffbrückenbindungen
    • Van-der-Waal'sche-Bindungen
    • Fällungsreaktion
  • Donator-Akzeptor-Prinzip
    • Einleitung zu Donator-Akzeptor-Prinzip
    • Säuren und Basen
      • Einleitung zu Säuren und Basen
      • Protolyse, Protonenübergang
      • Konjugiertes Säure-Base-Prinzip nach Brönsted und Lowry
    • Mehrprotonige Säuren, Dissoziationsstufen
    • Ampholyte
      • Einleitung zu Ampholyte
      • Autoprotolyse von Wasser
    • Ionenprodukt von Wasser
    • pH-Wert, potentia hydrogenii
    • Neutralisation
    • Massenwirkungsgesetz für Säuren- und Basenstärke
    • Säure-Base-Puffer
    • Säure-Base-Indikator
    • Säure-Base-Titration, Alkalimetrie, Acidimetrie
    • Redox-Chemie
      • Einleitung zu Redox-Chemie
      • Oxidation und Reduktion, Oxidations- und Reduktionsmittel
      • Oxidationszahlen
      • Redoxgleichungen
      • Disproportionierung, Komproportionierung
      • Elektrochemie
      • Galvanische Zelle
  • 94
  • 0
  • 177
  • 119
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Phillipp Grünewald

    Phillipp Grünewald

    "ingenieurkurse.de hat mir besonders bei den Mathe-Themen geholfen. Super Erklärungen!"
  • Martina Pfeiffer

    Martina Pfeiffer

    "Klasse für den Einstieg ins Ingenieurstudium."
  • Marcel Eberhardt

    Marcel Eberhardt

    "Ich mache mir dank euch keine Sorgen für die Prüfungen. Danke!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen