ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Operations Research 2
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Ganzzahlige Optimierung > Branch-and-Bound-Verfahren:

Branch-and-Bound: Knapsack-Problem (Alternative)

WebinarTerminankündigung:
 Am 20.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Operations Research) Primaler Simplexalgorithmus
- Das 60-minütige Gratis-Webinar behandelt den primalen Simplexalgorithmus.
[weitere Informationen] [Terminübersicht]

In diesem Abschnitt soll eine alternative Vorgehensweise für das Branch-and-Bound Verfahren anhand eines Knapsack-Problems dargestellt werden. 

Gegeben sei das folgende Knapsack-Problem:

$F(x) = 14x_1 + 20x_2 + 18x_3 + 26x_4  $\rightarrow $ max!

u.d.N.

$8x_1 + 8x_2 + 6x_3 + 6x_4 \le 14$

$ x_j =\left\{\begin{array}{cl} 1 \\ 0 \end{array}\right. $

Es wird zunächst die Prioritätenreihenfolge festgelegt.

Prioritätenreihenfolge

Bevor mit der Aufstellung des Entscheidungsbaumes begonnen werden kann, wird zunächst die Reihenfolge der Variablen festgelegt, welche nach und nach abgearbeitet werden. Bei dem Knapsack-Problem berechnet man zunächst:

Methode

$\frac{c_j}{a_j}$       Quotient in absteigender Reihenfolge sortieren

und sortiert die resultierenden Werte dann in absteigender Reihenfolge. 

Für das hier angegebene Problem ergibt sich demnach die folgende Reihenfolge:

1. $\frac{26}{6} = 4,33$  für $x_4$

2. $\frac{18}{6} = 3$  für $x_3$

2. $\frac{20}{8} = 2,5$  für $x_2$

2. $\frac{14}{8} = 1,75$  für $x_1$

Es wird mit der Variable $x_4$ auf der obersten Ebene begonnen. Da die Variablen nur die Werte $0$ und $1$ annehmen können, wird die Verzweigung vorgenommen in $x_4 = 0$ und $x_4 = 1$. Für die unteren Ebenen wird $x_4$ konstant gehalten und die anderen Variablen variiert. Dabei wird die Prioritätenreihenfolge beachtet.

Für die oberste Ebene wird der Zielfunktionswert so gebildet, dass alle anderen Variablen den Wert $x_j = 1$ annehmen und $x_4$ mit dem verzweigten Wert eingeht. Dies zeigt den für die nachfolgenden Verzweigungen höchtsmöglich erzielbaren Zielfunktionswert an. Es muss nun mittels der Verzweigungen geprüft werden, ob dieser unter Berücksichtigung der Restriktion auch erreicht werden kann. Die Restriktion für die oberste Ebene wird so bestimmt, dass alle Variablen mit dem Wert $x_j = 0$ eingehen und $x_4$ mit dem verzweigten Wert. Dies zeigt die momentan tatsächlich in Anspruch genommene Restriktion an. 

Der Entscheidungsbaum wird rechtsorientiert erstellt. Das bedeutet, dass zunächst die rechten Verzweigungen solange abgearbeitet werden, bis diese ausgeschlossen werden können. Danach wird weiter von unten nach oben gearbeitet. Es ergibt sich der folgende Entscheidungsbaum nach dem Branch-and-Bound Verfahren:

Branch-and-Bound Knapsack-Problem rechtsorientiert

Das Ergebnis ist äquivalent zum Ergebnis aus dem vorherigen Abschnitt, allerdings sind hier mehr Verzweigungen zu untersuchen und damit der Rechenaufwand erheblich höher als mit dem Branch-and-Bound-Verfahren aus dem vorherigen Abschnitt.

Vorstellung des Online-Kurses Operations Research 2Operations Research 2
Dieser Inhalt ist Bestandteil des Online-Kurses

Operations Research 2

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Operations Research 2: Überblick
    • Einleitung zu Operations Research 2: Überblick
  • Grundlagen des Operations Research 1
    • Einleitung zu Grundlagen des Operations Research 1
    • Definition: Lineares Programm
    • Standardform: Maximierungsproblem
      • Einleitung zu Standardform: Maximierungsproblem
      • Grafische Lösung des Maximierungsproblems
    • Primaler Simplexalgorithmus
      • Einleitung zu Primaler Simplexalgorithmus
      • Lösung des Maximierungsproblems mittels primalen Simplexalgorithmus
    • Dualer Simplexalgorithmus
    • Umformung in die Standardform
    • Umformung in die Normalform
  • Ganzzahlige Optimierung
    • Einleitung zu Ganzzahlige Optimierung
    • Grafisches Verfahren
    • Verfahren von Gomory
      • Einleitung zu Verfahren von Gomory
      • Beispiel: Verfahren von Gomory
    • Branch-and-Bound-Verfahren
      • Einleitung zu Branch-and-Bound-Verfahren
      • Branch-and-Bound: Maximierungsprobleme
        • Einleitung zu Branch-and-Bound: Maximierungsprobleme
        • Branch-and-Bound am Maximierungsproblem
          • Einleitung zu Branch-and-Bound am Maximierungsproblem
          • Festlegung der oberen/unteren Schranke, Prioritätenfestlegung
          • Entscheidungsbaum für das Maximierungsproblem
          • Beispiel: Branch and Bound am Maximierungsproblem
        • Branch-and-Bound am Maximierungsproblem (optimale Lösung)
          • Einleitung zu Branch-and-Bound am Maximierungsproblem (optimale Lösung)
          • Beispiel: Branch and Bound am Maximierungsproblem (optimale Lösung)
      • Branch-and-Bound: Minimierungsprobleme
        • Einleitung zu Branch-and-Bound: Minimierungsprobleme
        • Branch-and-Bound am Minimierungsproblem
          • Einleitung zu Branch-and-Bound am Minimierungsproblem
          • Festlegung der unteren/oberen Schranke, Prioritätenfestlegung
          • Entscheidungsbaum für das Minimierungsproblem
          • Beispiel: Branch and Bound am Minimierungsproblem
        • Branch-and-Bound am Minimierungsproblem (optimale Lösung)
          • Einleitung zu Branch-and-Bound am Minimierungsproblem (optimale Lösung)
          • Beispiel: Branch and Bound am Minimierungsproblem (optimale Lösung) 1
          • Beispiel: Branch and Bound am Minimierungsproblem (optimale Lösung) 2
          • Beispiel: Branch and Bound am Minimierungsproblem (optimale Lösung) 3
      • Branch-and-Bound: Knapsack-Problem
      • Branch-and-Bound: Knapsack-Problem (Alternative)
    • Verfahren der vorsichtigen Annäherung
  • Kombinatorische Optimierung
    • Einleitung zu Kombinatorische Optimierung
    • Traveling-Salesman-Problem
      • Einleitung zu Traveling-Salesman-Problem
      • Vollständige Enumeration
        • Einleitung zu Vollständige Enumeration
        • Beispiel: Vollständige Enumeration (Reduktion der Matrix)
        • Beispiel: Vollständige Enumeration (Anwendung des Verfahrens)
      • Heuristische Verfahren
        • Einleitung zu Heuristische Verfahren
        • Verfahren des besten Nachfolgers
          • Einleitung zu Verfahren des besten Nachfolgers
          • Verfahren des besten Nachfolgers (Ausgangsmatrix)
          • Verfahren des besten Nachfolgers (reduzierte Matrix)
        • Verfahren der sukzessiven Einbeziehung von Stationen
          • Einleitung zu Verfahren der sukzessiven Einbeziehung von Stationen
          • Einbeziehung von Stationen (Ausgangsmatrix)
      • Entscheidungsbaumverfahren
        • Einleitung zu Entscheidungsbaumverfahren
        • Begrenzte Enumeration
        • Branch-and-Bound Verfahren am Traveling-Salesman-Problem
          • Einleitung zu Branch-and-Bound Verfahren am Traveling-Salesman-Problem
          • Branch-and-Bound (TSP): 1. Iteration
          • Branch-and-Bound (TSP): Weitere Iterationen
    • Fertigungsablaufplanung
      • Einleitung zu Fertigungsablaufplanung
      • Flow-Shop-Probleme
      • Johnson-Algorithmus
  • Nichtlineare Optimierung
    • Grundlagen der nichtlinearen Optimierung
      • Einleitung zu Grundlagen der nichtlinearen Optimierung
      • Konkave und konvexe Funktionen
        • Einleitung zu Konkave und konvexe Funktionen
        • Beispiel: Nachweis konvexer/konkaver Funktionen auf direktem Weg
        • Beispiel: Nachweis konvexer/konkaver Funktionen über Differenzierbarkeit
    • Nichtlineare Optimierung unter Nebenbedingungen
      • Einleitung zu Nichtlineare Optimierung unter Nebenbedingungen
      • Methode der zulässigen Richtung
        • Einleitung zu Methode der zulässigen Richtung
        • Beispiel: Methode der zulässigen Richtungen (1. Iteration)
        • Beispiel: Methode der zulässigen Richtungen (2. Iteration)
        • Beispiel: Methode der zulässigen Richtungen (3. Iteration)
  • 61
  • 7
  • 25
  • 64
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Phillipp Grünewald

    Phillipp Grünewald

    "ingenieurkurse.de hat mir besonders bei den Mathe-Themen geholfen. Super Erklärungen!"
  • Martina Pfeiffer

    Martina Pfeiffer

    "Klasse für den Einstieg ins Ingenieurstudium."
  • Marcel Eberhardt

    Marcel Eberhardt

    "Ich mache mir dank euch keine Sorgen für die Prüfungen. Danke!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen