ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Technische Mechanik 2: Elastostatik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Stabbeanspruchungen > Spannungen im Stab:

Beispiel zu Spannungen im Stab: Hängender Zugstab

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Anwendungsbeispiel: ZugStab

Beispiel hängender Zustab (Spannungen im Stab)

Beispiel

Gegeben sei der obige Balken (1m breit, 10m lang), welcher an einem Stab $d = 0,15 m$ befestigt ist. Der Stab ist mittels eines Hakens an der Wand befestigt. Der Balken hat ein Eigengewicht von $F_{Balken} = 50 N$. Auf dem Balken befindet sich eine gleichmäßig verteilte Schneedecke (Flächenlast), mit $q_0 = 2 N/m^2$. Die Stabkraft soll vernachlässigt werden. Wie groß muss die Hakenkraft mindestens sein, damit diese den Balken samt Schneedecke trägt? Wie groß sind die inneren Spannungen im Stab?

Zunächst erfolgt der Freischnitt:

Beispiel Zugstab Freischnitt
Bestimmung der Haltekraft

Gesucht wird die Kraft $F_H$, welche der Haken aufbringen muss, um den Balken samt Schneelast zu tragen. Bevor mit der Bestimmung der Kraft $F_H$ begonnen werden kann, muss zunächst die gleichmäßig verteilte Flächenlast (Schneedecke) zu einer einzigen Kraft zusammengefasst werden. Um die gesamte Flächenlast zu einer Einzellast zusammenzufassen, muss $q_0$ mit der Fläche $A$ des Balkens, auf welche diese wirkt, multipliziert werden:

$F_{Schnee} = q_0 \cdot A = 2 \frac{N}{m^2} \cdot 1m \cdot 10m = 20 N$.


Es kann nun die Kraft $F_H$ mittels vertikaler Gleichgewichtsbedingung bestimmt werden:

$\uparrow : F_H - F_{Balken} - F_{Schnee} = 0$.


Aufgelöst nach der Kraft $F_H$ ergibt sich dann:

$F_H = F_{Balken} + F_{Schnee}$.

Einsetzen der Werte:

$F_H = 50 N + 20 N = 70 N$.

Der Haken muss mindestens 70 N an Kraft aufbringen, damit der Balken samt Schneedecke getragen wird.

Bestimmung der Spannungen

Als nächstes soll bestimmt werden, wie die Spannungen innerhalb des Stabes aussehen. Das ist wichtig zu erfahren, damit man die tatsächlichen Spannungen mit der zulässigen Spannung abgleichen kann. Ist die tatsächliche Spannung am Ende größer als die zulässige, so wird der Stab nicht halten und gegebenfalls reißen. Um dies zu vermeiden, werden Spannungen bestimmt. Hierzu wird ein gedachter Schnitt durch den Stab durchgeführt.

Beispiel Zugstab innere Spannungen

In der obigen Grafik erfolgt die Betrachtung des Stabes (der Übersicht halber) aus horizontaler Sicht. Es wird im ersten Schritt ein gedachter Schnitt durchgeführt. Danach wurde der Stab um ein Vielfaches vergrößert dargestellt, um die inneren Spannungen besser veranschaulichen zu können. Die Normalspannung $\sigma$ steht dabei immer senkrecht auf der Schnittfläche. Außerdem treten noch Schubspannungen $\tau$ auf, welche immer parallel zur Schnittfläche liegen. 

Es wird nun zunächst die Normalspannung $\sigma$ bestimmt. Die Normalspannung wirkt auf die gesamte Schnittfläche. Da es sich hierbei um einen kreisrunden Stab handelt, welcher den Durchmesser $d = 0,15m$ besitzt, kann man die Normalspannung $\sigma$ bestimmen durch:

$\sigma = \frac{F}{A}$.

Diese Gleichung ergibt sich aus der horizontalen Gleichgewichtsbedingung:

$\rightarrow : \sigma \cdot A - F_{Balken} - F_{Schnee} = 0$

$\sigma \cdot A$ muss berücksichtigt werden, da die Normalkraft $\sigma$ auf die gesamte Schnittfläche $A$ wirkt.


Aufgelöst nach $\sigma$ ergibt sich:

$\sigma = \frac{F_{Balken} + F_{Schnee}}{A}$.


Es muss nun noch die Schnittfläche $A$ bestimmt werden (keisrunder Stab):

$A = \pi \cdot r^2 = \pi \cdot (0,075 m)^2 = 0,018 m^2$.

Die Normalspannung ist demnach:

$\sigma = \frac{50 N + 20 N}{0,018 m^2} = 3.888,89 \frac{N}{m^2}$.

Da nun die Normalspannungen $\sigma$ bekannt sind, ist auch klar, was genau der Stab aushalten muss. Es muss nun ein Stab verwendet werden, dessen maximal zulässige Spannung größer ist als die berechnete Spannung. Angenommen die zulässige Spannung betrage $\sigma_{zu} = 370 \frac{N}{mm^2}$. 

Die tatsächliche Spannung beträgt: $0,003 888 89 \frac{N}{mm^2}$.   (umgerechnet)

Der Stab wird den Balken und die Schneelast ohne Probleme tragen, da die zulässige Spannung weit über der tatsächlichen Spannung liegt.

Merke

Schubspannungen $\tau$ treten bei Zug-und Druckstäben nicht auf.

Das wird auch deutlich aus der vertikalen Gleichgewichtsbedingung:

$\uparrow : -\tau \cdot A = 0$

Da keine weiteren vertikalen Kräfte wirken (nicht vergessen das Seil wird aus horizontaler Sicht betrachtet), treten auch keine Schubspannungen auf.

Man hätte auch die Spannungen innerhalb des Balkens berechnen können. Der Balken wird einmal nach unten gezogen (Gewichtskraft und Schneedecke) und oben wirkt eine weitere Kraft, nämlich die des Stabes, welcher den Balken hält. Man könnte dann den Balken gedanklich horizontal freischneiden und die inneren Spannungen bestimmen. Denn auch der Balken kann reißen, wenn die Kräfte an diesem zu groß sind.

Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Beispiel zu Spannungen im Stab: Hängender Zugstab ist Teil eines interaktiven Online-Kurses zum Thema Technische Mechanik 2: Elastostatik.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Technische Mechanik 2: ElastostatikTechnische Mechanik 2: Elastostatik
Dieser Inhalt ist Bestandteil des Online-Kurses

Technische Mechanik 2: Elastostatik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Elastostatik
    • Einleitung zu Kurs: Elastostatik
  • Grundlagen
    • Grundlegende Annahmen der Elastostatik
    • Statisches Gleichgewicht
    • Beanspruchungsarten
  • Stabbeanspruchungen
    • Allgemeine Definition der Spannung
    • Spannungen im Stab
      • Einleitung zu Spannungen im Stab
      • Prinzip von St. Venant
      • Spannung im Stab (senkrechter Schnitt)
      • Spannungen im Stab (Schnitt mit Winkel)
      • Beispiel zu Spannungen im Stab: Konischer Stab
      • Beispiel zu Spannungen im Stab: Hängender Zugstab
    • Dehnung im Stab
      • Dehnung im Stab (konstante Dehnung)
      • Dehnung (Stabelement)
    • Materialgesetz / Zugversuch
      • Einleitung zu Materialgesetz / Zugversuch
      • Spannungs-Dehnungs-Diagramm
      • Hookesches Gesetz
    • Wärmedehnungen
    • Verformungen quer zur Stabachse
      • Querdehnungen
      • Volumendehnungen
      • Schubverformungen
    • Differentialgleichung eines Stabes
    • Zusammenfassung der Grundgleichungen für den Stab
    • Statisch bestimmte Stabwerke
      • Statisch bestimmte Stabwerke (Einzelstab)
        • Einleitung zu Statisch bestimmte Stabwerke (Einzelstab)
        • Beispiel: Belastung durch Kraft am Stabende (ohne Linienkraft)
        • Beispiel: Belastung durch Kraft am Stabende (mit Linienkraft)
      • Statisch bestimmte Stabwerke (Stabzweischlag)
    • Statisch unbestimmte Stabwerke
      • Statisch unbestimmte Stabwerke (Einzelstab)
      • Statisch unbestimmte Stabwerke (Dreistab)
  • Mehrachsige Spannungszustände
    • Allgemeine Annahmen
    • Ebener Spannungszustand
      • Einleitung zu Ebener Spannungszustand
      • Ebener Spannungszustand: Koordinatentransformation
      • Beispiel 1: Koordinatentransformation
      • Ebener Spannungszustand: Zugeordnete Schubspannungen
      • Beispiel 2: Koordinatentransformation
      • Sonderfälle des ebenen Spannungszustandes
    • Hauptspannungen
      • Einleitung zu Hauptspannungen
      • Extremwerte der Normalspannungen (Hauptnormalspannungen)
      • Extremwerte der Schubspannungen (Hauptschubspannungen)
      • Formelsammlung Koordinatentransformation und Schnittwinkeländerung
      • Beispiele: Hauptspannungen
        • Beispiel 1: Hauptspannungen
        • Beispiel 2: Hauptspannungen
    • Mohrscher Spannungskreis
      • Einleitung zu Mohrscher Spannungskreis
      • Beispiel: Mohrscher Spannungskreis
    • Ebener Verzerrungszustand
      • Zusammenhang von Verschiebungen und Verzerrungen
        • Einleitung zu Zusammenhang von Verschiebungen und Verzerrungen
        • Verträglichkeitsbedingungen
        • Verzerrungstensor
      • Transformation von Verzerrungskomponenten
      • Hauptdehnungen
    • Räumlicher Verzerrungszustand
    • Hooksche Gesetz für mehrachsige Spannungszustände
      • Hookesches Gesetz im ebenen Spannungszustand
        • Einleitung zu Hookesches Gesetz im ebenen Spannungszustand
        • Hookesches Gesetz: Hauptdehnungen und Hauptspannungen
      • Hookesches Gesetz im ebenen Verzerrungszustand
      • Hookesches Gesetz für den räumlichen Spannungszustand
        • Einleitung zu Hookesches Gesetz für den räumlichen Spannungszustand
        • Hookesches Gesetz mit Wärmedehnungen
      • Beispiele: Hookesches Gesetz für mehrachsige Spannungszustände
  • Balkenbiegung
    • Einleitung zu Balkenbiegung
    • Arten der Biegung
    • Flächenträgheitsmomente
      • Einleitung zu Flächenträgheitsmomente
      • Flächenträgheitsmomente: Definition
      • Deviationsmomente unterschiedlicher Flächen
      • Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
      • Beispiel zu Flächenträgheitsmomenten: Rechteck
      • Beispiel: Flächenträgheitsmomente Dreieck
      • Flächenträgheitsmomente: Koordinatentransformation
      • Hauptträgheitsmomente / Hauptachsen
      • Satz von Steiner (Parallelverschiebung der Achsen)
      • Satz von Steiner für zusammengesetzte Flächen
    • Gerade bzw. einachsige Biegung
      • Einleitung zu Gerade bzw. einachsige Biegung
      • Reine Biegung
        • Einleitung zu Reine Biegung
        • Normalspannung bei reiner Biegung
        • Maximale Normalspannung bei reiner Biegung
        • Widerstandsmoment bei reiner Biegung
      • Querkraftbiegung
        • Einleitung zu Querkraftbiegung
        • Beispiel: Querkraftbiegung bei einachsiger Biegung
      • Beispiele: Normalspannungen bei einachsiger Balkenbiegung
        • Beispiel: Spannungsmaximum bei reiner Biegung
        • Beispiel: Widerstandsmoment, zulässige Spannung
      • Balkenverformung bei einachsiger Biegung
        • Einleitung zu Balkenverformung bei einachsiger Biegung
        • Differentialgleichung der elastischen Biegelinie
        • Lösung der Differentialgleichung (elastische Biegelinie)
        • Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Einleitung zu Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Lösung von Einbereichsaufgaben (Biegelinie)
          • Biegelinie mit Streckenlast
          • Lösung von Mehrbereichsaufgaben (Biegelinie)
        • Superpositionsprinzip
        • Statisch unbestimmt gelagerte Balken
      • Anhang: Biegelinie für unterschiedliche Balkenbelastungen
      • Übersicht Formeln: Einachsige Biegung
    • Schiefe bzw. zweiachsige Biegung
    • Gerade und schiefe Biegung mit Zug
  • Torsion
    • Torsion von Wellen
      • Einleitung zu Torsion von Wellen
      • mit Kreisquerschnitt
        • Einleitung zu mit Kreisquerschnitt
        • Beispiel 1: Torsion beim Kreisquerschnitt
      • mit Kreisringquerschnitt
    • Torsion von dünnwandigen, geschlossenen Profile
    • Torsion von dünnwandigen, offenen Profilen
  • Schub
    • Balkenverformung infolge von Schub
    • Schub bei dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen offenen Profilen
    • Schubmittelpunkt bei dünnwandigen offenen Profilen
  • Festigkeitshypothesen
    • Einleitung zu Festigkeitshypothesen
    • Hauptnormalspannungshypothese
    • Hauptschubspannungshypothese
    • Gestaltänderungsenergiehypothese
  • Stabilität und Knickung
    • Stabilitätsfälle und Gleichgewichtslagen
    • Eulersche Fälle der Stabknickung
      • Einleitung zu Eulersche Fälle der Stabknickung
      • Kritische Knickkraft
      • Kritische Knickspannung
  • 108
  • 17
  • 132
  • 214
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 14.04.2016:
    "Ich studiere Maschinenbau als Fernstudium und leider sind einige Studienheft lückenhaft und schwer verständlich geschrieben. Dieser Kurs ist das Beste was ich mir vorstellen kann!!! Ich bin so froh, dass ich diesen Kurs zufällig gefunden habe."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 26.01.2016:
    "Sehr gut, dass man Aufgaben erst selber rechnen kann und danach die Lösung erläutert wird."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 24.01.2016:
    "Tolles Programm! Super erklärt!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 07.10.2015:
    "Top"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 01.06.2015:
    "Ich schreibe zwar erst meinen Midterm in Mechanik 2 und war mir beim lernen immer unsicher wie genau ich ran gehen soll. Alte Midterms rechnen oder viel wissen aneignen? Wo kriege ich, dass wissen gut erklärt her? Bei eurem Kurs muss man sich keine Gedanken mehr machen alles ist sehr übersichtlich und gut aufbereitet. Mir macht der Kurs spaß. Danke für eure Arbeit!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 11.05.2015:
    "Super!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen