ZU DEN KURSEN!

Anorganische Chemie - Nebenquantenzahlen

Kursangebot | Anorganische Chemie | Nebenquantenzahlen

Anorganische Chemie

Nebenquantenzahlen

Zur Berechnung von Schalen haben wir bisher die Hauptquantenzahlen $ n $ genutzt. Für die Orbitale benötigen wir zusätzlich die Nebenquantenzahlen $ l $. Eine Nebenquantenzahl ergibt sich aus folgender Gleichung:

Methode

Hier klicken zum Ausklappen Nebenquantenzahl: $ l = n -1 $

Merke

Hier klicken zum Ausklappen Die Nebenquantenzahl ist also direkt abhängig von der Hauptquantenzahl.

In der K-Schale (n = 1) ergibt sich für das Orbital $ l = 1 – 1 = 0 $. Die Null steht für das s-Orbital. Jetzt wissen wir, dass die K-Schale ein s-Orbital besitzt, indem zwei Elektronen Platz finden.

Betrachten wir nun die L-Schale (n = 2). Diese ergibt sich für unser Orbital $ l = 2 – 1 = 1 $. Die Eins steht hier für das p-Orbital.

p-Orbitale haben eine energetisch höhere Lage als s-Orbitale, weshalb auch in der L-Schale ein s-Orbital existiert.

Fassen wir kurz zusammen:

Das Atommodell besitzt

  • Hauptquantenzahlen: $ n = 1, 2, 3, …. $

und

  • Nebenquantenzahlen:
  • $ l = n – 1 = 0 \rightarrow $ s-Orbital (Aussehen: radialsymmetrisch)
    s-Orbital
    s-Orbital


  • $ l = 1 \rightarrow $ p-Orbital (hantelförmig in jede Raumachse)
    p-Orbital
    p-Orbital


  • $ l = 2 \rightarrow $ d-Orbital (gekreuzte Doppelhantel)
    d-Orbital
    d-Orbital



  • $ l = 3 \rightarrow $ f-Orbital (rosettenförmig)
    f-Orbital
    f-Orbital

Die Anzahl der jeweiligen Orbitale kann durch nachfolgende Gleichung bestimmen werden:

Orbitalanzahl: $ 2 l + 1 = $

  • s-Orbital (x1),
  • p-Orbital (x3),
  • d-Orbital (x5),
  • f-Orbital (x7),

In der nächsten Abbildung haben wir alle Schalen (1-6) nach Bohr eingezeichnet. Jeder horizontale Strich steht hingegen für ein Orbital. Alle horizontalen Stiche auf gleicher Ebene sind energetisch äquivalent.

Energieschema
Energieschema

Merke

Hier klicken zum Ausklappen Man bezeichnet energetisch gleichwertige Orbitale als entartete Orbitale