ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Elektrotechnik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Magnetisches Feld > Einführung Magnetisches Feld:

Magnetische Hysterese

WebinarTerminankündigung aus unserem Online-Kurs Technische Mechanik 3: Dynamik:
 Am 06.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Dynamik) Gradlinige Bewegung eines Massenpunktes
- Dieses 60-minütige Gratis-Webinar behandelt die geradlinige Bewegung eines Massenpunktes.
[weitere Informationen] [Terminübersicht]

Es besteht ein Zusammenhang zwischen der magnetischen Flussdichte $ B $ und der magnetischen Feldstärke $ H $. Da diese Vorgänge äußerst umfangreich und nicht weniger kompliziert sind, werden wir Ihnen in diesem Kurstext zumindest die Grundlagen der Hysterese näher erläutern. 

Hysterese

Bei der Untersuchung von ferromagnetischen Werkstoffen hat sich herausgestellt, dass die Permeabilität $ \mu $ nicht konstant, jedoch direkt von der magnetischen Feldstärke  abhängig ist.
Bleibt die Permeabilität bei einer kleinen Feldstärke noch relativ groß, so sinkt sie mit wachsender Feldstärke. Die Ursache liegt in der Sättigung, die das Material infolge der steigenden Feldstärke erfährt. 

Merke

Um die Induktion/magnetische Flussdichte $ B $ um einen gewissen Betrag zu erhöhen, muss die magnetische Feldstärke $ H $ einen vergleichsweise weit aus höheren Betrag verstärkt werden. 

Senkt man die Feldstärke anschließend wieder auf einen Wert von Null, so wird man feststellen, dass ein Restmagnetismus [Remanenzinduktion $ B_r $ ] erhalten bleibt. Möchte man den Werkstoff vollständig entmagnetisieren muss eine Feldstärke in entgegengesetzter Richtung erzeugt werden. Diese Feldstärke bezeichnet man als Koerzitivfeldstärke $ H_c $.

Restmagnetismus

Der Restmagnetismus besteht, weil sich im Material Atom- und Molekülverbände kontinuierlich magnetisch ausrichten. Dabei entstehen Ströme, welche die Feldlinien, die von außen durch das Material fließen, umschließen und so den Magnetismus verstärken. Sind alle Bereiche des Materials vollständig ausgerichtet, so ist eine  Erhöhung der Feldstärke nicht mehr möglich. Wird nun die Flussdichte auf den Wert Null reduziert, so bleibt die Ausrichtung in Bereichen teilweise erhalten. Das Material weist dann einen Restmagnetismus auf. 

Hysteresekurve

Ändert man die Feldstärke zwischen zwei absolut gleichen positiven und negativen Werten, so erhält man eine Hysteresekurve, die für jedes ferromagnetische Material einen individuellen Verlauf aufweist.

Trotz der Individualität ist es möglich anhand der Hysteresekurve eine grobe Einteilung in weichmagnetische und hartmagnetische Materialien durchzuführen.

  • Weichmagnetisch: Material besitzt eine geringe Koerzitivfeldstärke $\rightarrow $ geeignet für Materialien deren Feldstärke häufig die Polarität ändern soll.
  • Hartmagnetisch: Material besitzt eine sehr hohe Koerzitivfeldstärke $\rightarrow $ geeignet für Materialien aus denen Dauermagnete erzeugt werden sollen. 

Nachfolgend sehen Sie zwei Hysteresekurven. Die erste Kurve stellt einen weichmagnetischen Werkstoff dar und die zweite Kurve einen hartmagnetischen Werkstoff.

Hysteresekurven
Hysteresekurven

Bei beiden Kurven, wird bei Null begonnen. Dabei wird der Strom so lange vergrößert bis die Sättigung erreicht ist. Diese erste Kurve bezeichnet man als Neukurve.

Merke

Die Neukurve zeichnet aus, dass sie nie wieder erreicht werden kann.

Anschließend reduziert man den Strom und die Feldstärke sinkt. Die sich dabei ergebenden Werte sind immer höher als die Werte der Neukurve. Diesen Effekt bezeichnet man als Hysterese. Danach kehrt man die Stromrichtung um und die Feldstärke bewegt sich in den negativen Bereich. Damit beginnt die Entmagnetisierung. Auch hier erreicht die Kurve im Verlauf einen Sättigungspunkt. Danach beginnt die Hysterese erneut. 

Unabhängig wie oft man diesen Vorgang wiederholt, die zurückgelegte Strecke der Kurve wird nie deckungsgleich mit der vorangegangenen Strecke sein. 

Multiple-Choice
Wieso trägt die Neukurve diesen Namen?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Bild von Autor Jan Morthorst

Autor: Jan Morthorst

Dieses Dokument Magnetische Hysterese ist Teil eines interaktiven Online-Kurses zum Thema Elektrotechnik.

Jan Morthorst verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses ElektrotechnikElektrotechnik
Dieser Inhalt ist Bestandteil des Online-Kurses

Elektrotechnik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einführung in die Elektrotechnik
    • Einleitung zu Einführung in die Elektrotechnik
  • Gleichstrom
    • Einführung Gleichstrom
    • Elektrische Größen
      • Einleitung zu Elektrische Größen
      • Elektrische Ladung
      • Elektrischer Strom
      • Technische Stromrichtung
      • Elektrisches Potential
        • Einleitung zu Elektrisches Potential
        • Bewegung einer positiven Ladung
        • Bewegung einer negativen Ladung
        • Ergänzende Informationen zum elektrischen Potential
      • Elektrische Spannung
      • Physikalische Größen
      • Elektrischer Stromkreis
      • Elektrischer Leitwert und Elektrischer Widerstand
    • Gleichstromkreise
      • Einleitung zu Gleichstromkreise
      • Schaltung von Widerständen
        • Einleitung zu Schaltung von Widerständen
        • Lineare Widerstände, Strom-Spannungs-Kennlinie
        • Nichtlineare Widerstände
        • Symmetrie der Strom-Spannungs-Kennlinie
        • Temperaturabhängigkeit von Widerständen
        • Reihenschaltung von Widerständen in Gleichstromkreisen
        • Parallelschaltung von Widerständen in Gleichstromkreisen
        • Vergleich von Parallelschaltung und Reihenschaltung
        • Kombination von Reihenschaltung und Parallelschaltung
      • Elektrische Quellen
        • Einleitung zu Elektrische Quellen
        • Spannungsquellen
        • Stromquellen
      • Kirchhoffsche Gesetze
        • Einleitung zu Kirchhoffsche Gesetze
        • Knoten, Zweig, Maschen
        • Knotensatz, 1. Kirchhoffsches Gesetz
        • Maschensatz, 2. Kirchhoffsches Gesetz
      • Brückenschaltung
        • Einleitung zu Brückenschaltung
        • Wheatstonesche Brückenschaltung
  • Elektrisches Feld
    • Einführung Elektrisches Feld
      • Einleitung zu Einführung Elektrisches Feld
      • Größen
      • Polarisation
      • Influenz
      • Kondensatoren 1
      • Kondensatoren 2
      • Schaltung von Kondensatoren
        • Parallelschaltung
        • Reihenschaltung
      • Energie eines magnetischen Feldes
  • Magnetisches Feld
    • Einführung Magnetisches Feld
      • Einleitung zu Einführung Magnetisches Feld
      • Vorgänge im magnetischen Feld
      • Unterschied Permanentmagnet und Elektromagnet
      • Fluss, Durchflutung, Spule
      • Feldstärke und Durchflutungsgesetz
      • Induktion und Lenz'sche Regel
      • Ruheinduktion und Bewegungsinduktion
      • Magnetische Hysterese
  • Wechselstrom
    • Einführung Wechselstrom
    • Wechselgrößen und Grundgesetze
      • Periodische Zeitfunktionen
        • Einleitung zu Periodische Zeitfunktionen
        • Ausgangsgrößen
        • Wechselgrößen
      • Sinusgrößen
        • Einleitung zu Sinusgrößen
        • Erzeugung von Sinusspannungen
        • Kennwerte
      • Belastungsarten im Wechselstromkreis
        • Einleitung zu Belastungsarten im Wechselstromkreis
        • Sinusströme und Sinusspannung
        • Blindwiderstände und Leitwert
        • Zeitdiagramme und Phasenverschiebungswinkel
      • Darstellung von Wechselgrößen im Zeigerbild
      • Leistung, Leistungsfaktor, Arbeit
    • Wechselstromkreise
      • Einleitung zu Wechselstromkreise
      • Kirchhoffsche Regeln bei Wechselstrom
      • Wechselstromschaltungen mit R, L und C
        • Einleitung zu Wechselstromschaltungen mit R, L und C
        • Beispiel: Reihenschaltung eines Widerstandes und einer Induktivität
        • Beispiel: Reihenschaltung eines Widerstandes und eines Kondensators
        • Beispiel: Parallelschaltung eines Widerstandes und einer Induktivität
        • Beispiel: Parallelschaltung eines Widerstandes und eines Kondensators
      • Schwingkreise
        • Einleitung zu Schwingkreise
        • Reihenschwingkreise
        • Parallelschwingkreise
      • Komplexe Berechnung von Wechselstromschaltungen
        • Einleitung zu Komplexe Berechnung von Wechselstromschaltungen
        • Komplexe Zahlen und Darstellungsformen
        • Komplexe Spannungen und Ströme
        • Komplexe Widerstände und Leitwerte
        • Zusammenfassung komplexer Berechnungen
  • Drehstrom
    • Einführung in die Drehstromtechnik
      • Einleitung zu Einführung in die Drehstromtechnik
      • Drehstromsystem
      • Strängeverkettung
      • Elektrische Größen der Sternschaltung
      • Elektrische Größen der Dreieckschaltung
      • Leistung, Leistungsfaktor, Arbeit
  • 84
  • 9
  • 131
  • 127
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 29.10.2016:
    "Ihr erklärt es super anschaulich und gebt auch noch Tipps für die Prüfung. Vielen Dank! Dank euren super Kursen kann ich ohne Probleme mehrere Stunden am Stück lernen"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 24.10.2016:
    "Echt super formuliert und die perfekte Unterstützung für mein Studium (Wirtschaftsingenieurwesen)! Danke dafür! :)"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 04.09.2016:
    "Bin positiv überrascht!"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 13.07.2016:
    "super"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 18.04.2016:
    "super"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 17.02.2016:
    "Sehr gut, besser als gedacht :)"

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 31.12.2015:
    "Simple erklärt. Gutes Tempo..."

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 17.12.2015:
    "Super Organisiert "

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 20.11.2015:
    "Zufrieden "

  • Gute Bewertung für Elektrotechnik

    Ein Kursnutzer am 21.03.2015:
    "Gut und verständlich erklärt."

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen