ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Analysis und Lineare Algebra
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Elementare Funktionen > Rationale Funktion > Gebrochen rationale Funktionen:

Hebbare Definitionslücke

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Eine hebbare Definitionslücke ist gegeben, wenn sowohl der Nenner als auch der Zähler für einen bestimmten Wert für $x$ zu Null wird. Der Begriff hebbar bedeutet in diesem Zusammenhang, dass die Definitionslücke behoben und damit der Definitionsbereich erweitert werden kann.

Methode

Vorgehensweise:

  1. Nullstellen des Nenners bestimmen.
  2. Nullstellen des Zählers bestimmen. Resultiert der selbe Wert wie in 1. liegt eine mögliche hebbare Definitionslücke vor, ansonsten eine Polstelle.
  3. Zähler und Nenner faktorisieren, den Bruch kürzen.
  4. WICHTIG! Erneut prüfen, ob eine hebbare Definitionslücke vorliegt oder eine Polstelle.

In 4. muss nochmals überprüft werden, ob eine hebbare Definitionslücke vorliegt. Dafür wird der bei 2. ermittelte Wert (falls hebbare Lücke) in den Nenner eingesetzt. Resultiert eine Definitionslücke (wird der Nenner zu null), so liegt eine Polstelle vor, ansonsten eine hebbare Lücke.

Gegeben sei die Funktion

Beispiel

$f(x) = \frac{2x^2 + 2x - 12}{6x^2 - 12x}$

Prüfe, ob eine hebbare Definitonslücke vorliegt und behebe diese!

1. Nullstellen des Nenners bilden:

$n(x) = 6x^2 - 12x$   /6

$n(x) = x^2 - 2x$   /6

$x_{1,2} = -\frac{p}{2} \pm\sqrt{(\frac{p}{2})^2 - q}$

$x_{1,2} = -\frac{-2}{2} \pm\sqrt{(\frac{-2}{2})^2 - 0}$

$x_1 = 2$, $x_2 = 0$


2. Nullstellen des Zählers bilden:

$z(x) = 2x^2 + 2x - 12$ 

Methode

$x_{1,2} = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$      Mitternachtsformel

$x_{1,2} = \frac{-2 \pm \sqrt{2^2-4 \cdot 2 \cdot -12}}{2 \cdot 2}$    

$x_1 = 2$, $x_2 = -3$

Für $x = 2$ wird sowohl der Zähler als auch der Nenner zu null, wenn $x = 2$ eingesetzt wird. Es liegt also eine mögliche hebbare Definitionslücke vor. 

3. Zähler und Nenner faktorisieren:

Zum Faktorisieren werden die Zähler- und Nennernullstellen herangezogen und auf eine Seite gebracht:

$f(x) = \frac{(x-2)(x+3)}{(x-2)(x-0)}$

$f(x) = \frac{(x-2)(x+3)}{(x-2)x}$


Bruch kürzen:

$f(x) = \frac{x+3}{x}$

4. Erneut auf hebbare Lücke überprüfen:

Die ermittelte mögliche hebbare Lücke lag bei $x = 2$. Der Nenner wird nicht zu null, es liegt demnach keine Definitionslücke vor. Es handelt sich also um eine hebbare Definitionslücke. 

Der Definitionsbereich der Funktion kann dann wie folgt erweitert werden:

Einsetzen der hebbare Lücke $x = 2$ in den Bruch:

$f(x) = \frac{x+3}{x} = 2,5$

$f(x) = \begin{cases} 2,5 \; \; \; \text{für} \; x = 2 \\ f(x) \; \; \text{sonst} \end{cases}$

Video: Hebbare Definitionslücke

In diesem Abschnitt wird gezeigt, wie eine hebbare Lücken behoben werden kann und damit der Definitionsbereich erweitert wird.
Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Hebbare Definitionslücke ist Teil eines interaktiven Online-Kurses zum Thema Analysis und Lineare Algebra.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Höhere Mathematik 1: Analysis und Lineare AlgebraHöhere Mathematik 1: Analysis und Lineare Algebra
Dieser Inhalt ist Bestandteil des Online-Kurses

Analysis und Lineare Algebra

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Höhere Mathematik 1
    • Einleitung zu Kurs: Höhere Mathematik 1
  • Grundlagen: Mengenlehre und Reelle Zahlen
    • Einleitung zu Grundlagen: Mengenlehre und Reelle Zahlen
    • Mengenlehre
      • Einführung in die Mengenlehre
      • Teilmengen
      • Mengenoperationen
        • Vereinigung von Mengen
        • Durchschnitt von Mengen
        • Differenz von Mengen
        • Komplementärmenge
        • Produktmengen
        • Übungsbeispiele zur Mengenlehre
      • Rechenregel für Mengen
        • Kommutativgesetz
        • Assoziativgesetz
        • Distributivgesetz
        • Regel von de Morgan
    • Reelle Zahlen
      • Einleitung zu Reelle Zahlen
      • Bezeichnung reeller Zahlen
      • Ungleichungen
        • Einleitung zu Ungleichungen
        • Beispiele: Betragsungleichungen, Bruchungleichungen
      • Intervalle
      • Schranken (Supremum, Infimum)
      • Beträge
      • Vollständige Induktion
        • Einleitung zu Vollständige Induktion
        • Beispiele: Vollständige Induktion
      • Fakultät und Binomialkoeffizienten
    • Anwendungsbeispiele: Mengenlehre und reelle Zahlen
  • Vektorrechnung
    • Einführung in die Vektorrechnung
      • Einleitung zu Einführung in die Vektorrechnung
      • Addition von Vektoren
      • Subtraktion von Vektoren
      • Skalieren von Vektoren
      • Einheitsvektor, Länge von Vektoren
      • Dreiecksungleichung
    • Das Skalarprodukt
      • Skalarprodukt und Winkel
      • Zerlegung von Vektoren
      • Rechengesetze: Skalarprodukt
    • Das Vektorprodukt
    • Das Spatprodukt
    • Übungsaufgaben zur Vektorrechnung
  • Komplexe Zahlen
    • Definition von komplexen Zahlen
    • Grundrechenarten der komplexen Zahlen
    • Polarkoordinaten
    • Nullstellen von Polynomen
      • Einleitung zu Nullstellen von Polynomen
      • Fundamentalsatz der Algebra
      • pq-Formel
  • Elementare Funktionen
    • Rationale Funktion
      • Einleitung zu Rationale Funktion
      • Ganz rationale Funktionen
        • Einleitung zu Ganz rationale Funktionen
        • Nullstellen ganzrationaler Funktionen
        • Grenzwerte ganzrationaler Funktionen
      • Gebrochen rationale Funktionen
        • Einleitung zu Gebrochen rationale Funktionen
        • Nullstellen, Definitionslücken, Polstellen
        • Hebbare Definitionslücke
        • Asymptoten
        • Grenzwerte gebrochen rationaler Funktionen
        • Echt / unecht gebrochen rationale Funktion
    • Nicht rationale Funktionen
      • Einleitung zu Nicht rationale Funktionen
      • Wurzelfunktionen
      • Exponentialfunktionen
        • Die e-Funktion
        • Die allgemeine Exponentialfunktion
      • Logarithmusfunktion
      • Trigonometrische Funktion
        • Einleitung zu Trigonometrische Funktion
        • Symmetrieeigenschaften der trigonomterischen Funktionen
        • Beziehungen der trigonometrischen Funktionen
        • Rechenoperatoren für trigonomterische Funktionen
          • Einleitung zu Rechenoperatoren für trigonomterische Funktionen
          • Additionstheoreme von trigonometrische Funktionen
          • Summen und Differenzen trigonometrischer Terme
      • Hyperbelfunktionen
    • Grenzwert von Funktionen
    • Stetigkeit einer Funktion
  • Differentialrechnung
    • Ableitungen
      • Einleitung zu Ableitungen
      • Ableitungen erster Ordnung
      • Ableitungen höherer Ordnung
    • Wendepunkte
    • Extremwerte
    • Ableitungsregeln
    • Ableitung der Elementaren Funktionen
    • Mittelwertsätze
    • Monotone Funktionen
    • Konkave und konvexe Funktionen
      • Einleitung zu Konkave und konvexe Funktionen
      • Nachweis Konkavität und Konvexität auf direktem Weg
      • Nachweis Konkavität und Konvexität durch Differentation
    • Regel von de l' Hospital
    • Näherungsverfahren zur Nullstellenberechnung nach Newton
  • Integralrechnung
    • Unbestimmte Integrale
      • Einleitung zu Unbestimmte Integrale
      • Rechenregeln für unbestimmte Integrale
      • Integration durch Substitution bei unbestimmten Integralen
      • Partielle Integration bei unbestimmten Integralen
      • Partialbruchzerlegung (rationale Zahlen) bei unbestimmten Integralen
      • Integration nicht-rationaler Zahlen bei unbestimmten Integralen
    • Bestimmte Integrale
      • Einleitung zu Bestimmte Integrale
      • Hauptsatz der Differential - und Integralrechnung
      • Integration durch Substitution bei bestimmten Integralen
      • Partielle Integration bei bestimmten Integralen
    • Uneigentliche Integrale
      • Einleitung zu Uneigentliche Integrale
      • Uneigentliche Integrale Typ 1
      • Uneigentliche Integrale Typ 2
  • Lineare Algebra
    • Einleitung zu Lineare Algebra
    • Matrizen
      • Einleitung zu Matrizen
      • Addition und Subtraktion von Matrizen
      • Multiplikation mit Zahlenwerten bei Matrizen
      • Rechenregeln für Matrizen
    • Matrizenmultiplikation
    • Invertierbare Matrix
    • Gauß Eliminationsverfahren
    • Rang einer Matrix
    • Determinanten
      • Einleitung zu Determinanten
      • Laplacescher Entwicklungssatz
      • Cramersche Regel
    • Eigenwerte und Eigenvektoren
      • Eigenwerte
      • Eigenvektoren
      • Diagonalmatrix
      • Diagonalisierbarkeit
        • Einleitung zu Diagonalisierbarkeit
        • Beispiel 1: Diagonalisierbarkeit
        • Beispiel 2: Diagonalisierbarkeit
  • 112
  • 23
  • 199
  • 81
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 29.11.2016:
    "zufrieden "

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 27.11.2016:
    "sehr guter einstieg"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 11.11.2016:
    "Es macht spass hier zu lernen"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 29.09.2016:
    "ALLES SUBBA"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 29.08.2016:
    "einfach und trotzdem genau erklärt "

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 10.07.2016:
    "alles super bisher"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 24.05.2016:
    "Das was ich bis jetzt erlernen konnte hat mir ganz gut gefallen!!"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 17.04.2016:
    "weiter so :D"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 29.03.2016:
    "Gute Erklärungen, einfach verständlich."

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 13.12.2015:
    "gute Erklärungen"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 29.10.2015:
    "Sehr schön gegliedert und optimiert auf das Wichtigste. Dankeschön"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 09.12.2014:
    "Waaaaaaaaaaaaaaaaaaahnsinn einfach nur sein Geld wert :D Nur 25€ für solch einen Kurs würden auch reichen ;) wir sind schließlich Studenten und noch keine Akademiker ;-D aber auf jedenfall TOP Immer, wenn ich in der Uni sitze und nichts verstehe und dann an diesen Kurs hier denke, komme ich mir in der Uni richtig dumm vor :-D mir fehlen einfach die Worte Note 1 reicht garnicht :)"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 13.10.2014:
    "Kurz und kapp,werden die Inhalte (wesentliche und wichtige) verständlich erklärt. "

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 22.08.2014:
    "Hätte ich das nur während dem Abi damals gewusst :D Ich war damals aber auch faul, sehr gut das man hier an den Basics anfängt und Schritt für Schriit nochmal alles erklärt bekommt =)))"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen