ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Analysis und Lineare Algebra
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Lineare Algebra > Eigenwerte und Eigenvektoren > Diagonalisierbarkeit:

Beispiel 2: Diagonalisierbarkeit

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

In diesem Abschnitt wird geprüft, ob die algebraische Vielfachheit mit der geometrischen Vielfachheit übereinstimmt.

Anwendungsbeispiel 2: Diagonalisierbarkeit

Beispiel

$A = \begin{pmatrix} 9 & 0 & -6 \\ 18 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix}$

Ist die obige Matrix diagonalisierbar?

1. Schritt: Berechnung des charakteristischen Polynoms

Berechnung des charakteristischen Polynoms mittels Regel von Sarrus:

$\chi_n(\lambda) = det(A-\lambda E) = \begin{vmatrix} 9-\lambda & 0 & -6 \\ 18 & 6-\lambda & 0 \\ 0 & 0 & 6-\lambda \\ 9-\lambda & 0 & -6 \\ 18 & 6-\lambda & 0 \end{vmatrix}$

$\chi_n (\lambda) = (9-\lambda) \cdot (6-\lambda) \cdot (6-\lambda) $

2. Schritt: Nullstellen\ Eigenwerte bestimmen

Die Eigenwerte können sofort abgelesen werden. Wenn eine Klammer null wird, dann wird der gesamte Ausdruck zu null und die Bedingung $\chi_n(\lambda) = 0$ ist erfüllt.

$\lambda_1 = 9$, $\lambda_{2,3} = 6$

Es sind also zwei Eigenwerte berechnet worden, wobei der 2. Eigenwert die Vielfachheit 2 aufweist. Es existieren also 3 Nullstellen für eine $3 \times 3$-Matrix. Das charakteristische Polynom zerfällt vollständig in Linearfaktoren.

3. Bestimmung der Eigenvektoren:

Es muss als nächstes geprüft werden, ob die algebraische Vielfachheit der Eigenwerte mit der geometrischen übereinstimmt. Hierfür müssen die Eigenvektoren zu den ermittelten Eigenwerten berechnet werden. Dies geschieht mit der folgenden Formel:

$(A-\lambda E) \cdot \vec{x} = 0$

1. Eigenvektor:

mit $\lambda = 9$ ergibt sich:

$(A-9 \cdot  E) \cdot \vec{x} = 0$


Es gilt:

$ \begin{pmatrix} 9-9 & 0 & -6 \\ 18 & 6-9 & 0 \\ 0 & 0 & 6-9 \end{pmatrix} \cdot \begin{pmatrix}x_1  \\ x_2 \\ x_3 \end{pmatrix} = 0$


Es wird die Koeffizientenmatrix herangezogen und zunächst auf Zeilenstufenform gebracht (mittels Gauß-Algorithmus):

$ \begin{pmatrix} 9-9 & 0 & -6 \\ 18 & 6-9 & 0 \\ 0 & 0 & 6-9 \end{pmatrix} $

$ \begin{pmatrix} 0 & 0 & -6 \\ 18 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix} $    3.Zeile *2 - 1.Zeile

$ \begin{pmatrix} 0 & 0 & -6 \\ 18 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} $ 


Es kann nun das lineare Gleichungssystem aufgestellt werden:

$ \begin{pmatrix} 0 & 0 & -6 \\ 18 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix}x_1  \\ x_2 \\ x_3 \end{pmatrix} = 0$

(1) $-6x_3 = 0$

(2) $18x_1 -3x_2 = 0$ 

Auflösen nach $x$:

(1): $x_3 = 0$

(2): $x_1 = \frac{1}{6} x_2$

Das vorliegende Gleichungssystem besitzt zwei Gleichungen, aber drei Unbekannte. Das bedeutet, dass das Gleichungssystem unterbestimmt ist und es unendlich viele Lösungen gibt. Eine spezielle Lösung erhält man, indem man für eine der Variablen einen beliebigen Wert einsetzt. Es gilt laut (1): $x_3 = 0$.  Aus der 2. Gleichung resultiert, dass wenn $x_1 = 1$ gesetzt wird, dann muss $x_2 = 6$ gesetzt werden. Wir haben also einen Eigenvektor ermittelt:

$Eig(\lambda = 9) = \begin{pmatrix} 1 \\ 6  \\ 0  \end{pmatrix}$

Man hätte natürlich ebenfalls für $x_1 = 2$ einsetzen können, dann wäre $x_2 = 12$.

$Eig(\lambda = 9) = \begin{pmatrix} 2 \\ 12  \\ 0  \end{pmatrix}$

Es existieren also unendliche viele Eigenvektoren, die aber alle linear voneinander abhängig sind:

 $\begin{pmatrix} 2 \\ 12  \\ 0  \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 6  \\ 0  \end{pmatrix}$

Wir suchen aber linear unabhängige Eigenvektoren. Für $\lambda = 9$ existiert 1 linear unabhängiger Eigenvektor.

2. Eigenvektor:

Als nächstes wird der Eigenvektor für $\lambda = 6$ mit der algebraischen Vielfachtheit 2 gesucht. Es müssen hier 2 unabhängige Eigenvektoren resultieren, damit die algebraische Vielfachheit gleich der geometrischen ist. Es wird nun wieder der Eigenvektor bestimmt:

$(A-6 \cdot E) \cdot \vec{x} = 0$

$ \begin{pmatrix} 9-6 & 0 & -6 \\ 18 & 6-6 & 0 \\ 0 & 0 & 6-6 \end{pmatrix} \cdot \begin{pmatrix}x_1  \\ x_2 \\ x_3 \end{pmatrix} = 0$

$ \begin{pmatrix} -3 & 0 & -6 \\ 18 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix}x_1  \\ x_2 \\ x_3 \end{pmatrix} = 0$

Es kann als nächstes das lineare Gleichungssystem aufgestellt werden, da keine weiteren Umformungen mittels Gauß möglich sind:

(1) $-3x_1 - 6x_3 = 0$

(2) $18x_1 = 0$

Auflösen nach $x$:

(1): $x_3 = -\frac{1}{2} x_1$

(2): $x_1 = 0$

Es gilt $x_1 = 0$. Das bedeutet, dass ebenfalls $x_3 = 0$ gilt (aus 1). Da der Eigenvektor aber vom Nullvektor verschieden sein muss, kann $x_2 = 1$ gesetzt werden und schon resultiert ein Eigenvektor für den Eigenwert 6:

$Eig(\lambda = 6) = \begin{pmatrix} 0 \\ 1  \\ 0  \end{pmatrix}$

Es resultiert nur ein linear unabhängiger Eigenvektor.

Wir haben also ingesamt 2 linear unabhängige Eingenvektoren, aber 3 Nullstellen gegeben. Die Matrix kann nur diagonalisiert werden, wenn die Anzahl der Nullstellen gleich der Anzahl der Eigenvektoren ist. Für die Nullstelle $x_{2,3} = 6$ bzw. für den Eigenwert $\lambda = 6$ müssten demnach 2 linear unabhängige Eigenvektoren resultieren, weil dieser Eigenwert die Vielfachheit 2 aufweist. 

Merke

Die algebraische Vielfachheit stimmt also nicht mit der geometrischen überein. Die Matrix kann nicht diagonalisiert werden.

Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Beispiel 2: Diagonalisierbarkeit ist Teil eines interaktiven Online-Kurses zum Thema Analysis und Lineare Algebra.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Höhere Mathematik 1: Analysis und Lineare AlgebraHöhere Mathematik 1: Analysis und Lineare Algebra
Dieser Inhalt ist Bestandteil des Online-Kurses

Analysis und Lineare Algebra

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Höhere Mathematik 1
    • Einleitung zu Kurs: Höhere Mathematik 1
  • Grundlagen: Mengenlehre und Reelle Zahlen
    • Einleitung zu Grundlagen: Mengenlehre und Reelle Zahlen
    • Mengenlehre
      • Einführung in die Mengenlehre
      • Teilmengen
      • Mengenoperationen
        • Vereinigung von Mengen
        • Durchschnitt von Mengen
        • Differenz von Mengen
        • Komplementärmenge
        • Produktmengen
        • Übungsbeispiele zur Mengenlehre
      • Rechenregel für Mengen
        • Kommutativgesetz
        • Assoziativgesetz
        • Distributivgesetz
        • Regel von de Morgan
    • Reelle Zahlen
      • Einleitung zu Reelle Zahlen
      • Bezeichnung reeller Zahlen
      • Ungleichungen
        • Einleitung zu Ungleichungen
        • Beispiele: Betragsungleichungen, Bruchungleichungen
      • Intervalle
      • Schranken (Supremum, Infimum)
      • Beträge
      • Vollständige Induktion
        • Einleitung zu Vollständige Induktion
        • Beispiele: Vollständige Induktion
      • Fakultät und Binomialkoeffizienten
    • Anwendungsbeispiele: Mengenlehre und reelle Zahlen
  • Vektorrechnung
    • Einführung in die Vektorrechnung
      • Einleitung zu Einführung in die Vektorrechnung
      • Addition von Vektoren
      • Subtraktion von Vektoren
      • Skalieren von Vektoren
      • Einheitsvektor, Länge von Vektoren
      • Dreiecksungleichung
    • Das Skalarprodukt
      • Skalarprodukt und Winkel
      • Zerlegung von Vektoren
      • Rechengesetze: Skalarprodukt
    • Das Vektorprodukt
    • Das Spatprodukt
    • Übungsaufgaben zur Vektorrechnung
  • Komplexe Zahlen
    • Definition von komplexen Zahlen
    • Grundrechenarten der komplexen Zahlen
    • Polarkoordinaten
    • Nullstellen von Polynomen
      • Einleitung zu Nullstellen von Polynomen
      • Fundamentalsatz der Algebra
      • pq-Formel
  • Elementare Funktionen
    • Rationale Funktion
      • Einleitung zu Rationale Funktion
      • Ganz rationale Funktionen
        • Einleitung zu Ganz rationale Funktionen
        • Nullstellen ganzrationaler Funktionen
        • Grenzwerte ganzrationaler Funktionen
      • Gebrochen rationale Funktionen
        • Einleitung zu Gebrochen rationale Funktionen
        • Nullstellen, Definitionslücken, Polstellen
        • Hebbare Definitionslücke
        • Asymptoten
        • Grenzwerte gebrochen rationaler Funktionen
        • Echt / unecht gebrochen rationale Funktion
    • Nicht rationale Funktionen
      • Einleitung zu Nicht rationale Funktionen
      • Wurzelfunktionen
      • Exponentialfunktionen
        • Die e-Funktion
        • Die allgemeine Exponentialfunktion
      • Logarithmusfunktion
      • Trigonometrische Funktion
        • Einleitung zu Trigonometrische Funktion
        • Symmetrieeigenschaften der trigonomterischen Funktionen
        • Beziehungen der trigonometrischen Funktionen
        • Rechenoperatoren für trigonomterische Funktionen
          • Einleitung zu Rechenoperatoren für trigonomterische Funktionen
          • Additionstheoreme von trigonometrische Funktionen
          • Summen und Differenzen trigonometrischer Terme
      • Hyperbelfunktionen
    • Grenzwert von Funktionen
    • Stetigkeit einer Funktion
  • Differentialrechnung
    • Ableitungen
      • Einleitung zu Ableitungen
      • Ableitungen erster Ordnung
      • Ableitungen höherer Ordnung
    • Wendepunkte
    • Extremwerte
    • Ableitungsregeln
    • Ableitung der Elementaren Funktionen
    • Mittelwertsätze
    • Monotone Funktionen
    • Konkave und konvexe Funktionen
      • Einleitung zu Konkave und konvexe Funktionen
      • Nachweis Konkavität und Konvexität auf direktem Weg
      • Nachweis Konkavität und Konvexität durch Differentation
    • Regel von de l' Hospital
    • Näherungsverfahren zur Nullstellenberechnung nach Newton
  • Integralrechnung
    • Unbestimmte Integrale
      • Einleitung zu Unbestimmte Integrale
      • Rechenregeln für unbestimmte Integrale
      • Integration durch Substitution bei unbestimmten Integralen
      • Partielle Integration bei unbestimmten Integralen
      • Partialbruchzerlegung (rationale Zahlen) bei unbestimmten Integralen
      • Integration nicht-rationaler Zahlen bei unbestimmten Integralen
    • Bestimmte Integrale
      • Einleitung zu Bestimmte Integrale
      • Hauptsatz der Differential - und Integralrechnung
      • Integration durch Substitution bei bestimmten Integralen
      • Partielle Integration bei bestimmten Integralen
    • Uneigentliche Integrale
      • Einleitung zu Uneigentliche Integrale
      • Uneigentliche Integrale Typ 1
      • Uneigentliche Integrale Typ 2
  • Lineare Algebra
    • Einleitung zu Lineare Algebra
    • Matrizen
      • Einleitung zu Matrizen
      • Addition und Subtraktion von Matrizen
      • Multiplikation mit Zahlenwerten bei Matrizen
      • Rechenregeln für Matrizen
    • Matrizenmultiplikation
    • Invertierbare Matrix
    • Gauß Eliminationsverfahren
    • Rang einer Matrix
    • Determinanten
      • Einleitung zu Determinanten
      • Laplacescher Entwicklungssatz
      • Cramersche Regel
    • Eigenwerte und Eigenvektoren
      • Eigenwerte
      • Eigenvektoren
      • Diagonalmatrix
      • Diagonalisierbarkeit
        • Einleitung zu Diagonalisierbarkeit
        • Beispiel 1: Diagonalisierbarkeit
        • Beispiel 2: Diagonalisierbarkeit
  • 112
  • 23
  • 199
  • 81
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 29.11.2016:
    "zufrieden "

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 27.11.2016:
    "sehr guter einstieg"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 11.11.2016:
    "Es macht spass hier zu lernen"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 29.09.2016:
    "ALLES SUBBA"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 29.08.2016:
    "einfach und trotzdem genau erklärt "

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 10.07.2016:
    "alles super bisher"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 24.05.2016:
    "Das was ich bis jetzt erlernen konnte hat mir ganz gut gefallen!!"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 17.04.2016:
    "weiter so :D"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 29.03.2016:
    "Gute Erklärungen, einfach verständlich."

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 13.12.2015:
    "gute Erklärungen"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 29.10.2015:
    "Sehr schön gegliedert und optimiert auf das Wichtigste. Dankeschön"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 09.12.2014:
    "Waaaaaaaaaaaaaaaaaaahnsinn einfach nur sein Geld wert :D Nur 25€ für solch einen Kurs würden auch reichen ;) wir sind schließlich Studenten und noch keine Akademiker ;-D aber auf jedenfall TOP Immer, wenn ich in der Uni sitze und nichts verstehe und dann an diesen Kurs hier denke, komme ich mir in der Uni richtig dumm vor :-D mir fehlen einfach die Worte Note 1 reicht garnicht :)"

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 13.10.2014:
    "Kurz und kapp,werden die Inhalte (wesentliche und wichtige) verständlich erklärt. "

  • Gute Bewertung für Analysis und Lineare Algebra

    Ein Kursnutzer am 22.08.2014:
    "Hätte ich das nur während dem Abi damals gewusst :D Ich war damals aber auch faul, sehr gut das man hier an den Basics anfängt und Schritt für Schriit nochmal alles erklärt bekommt =)))"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen