ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Regelungstechnik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
LAPLACE Transformation > Anwendungsarten der LAPLACE-Transformation:

Periodische Funktionen

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

In vielen anwendungstechnischen Prozessen der Regelungstechnik treten Signalverläufe auf, die keinen willkürlichen Verlauf haben sondern zeitlich periodisch sind. Um diese Signalverläufe abbilden zu können, verwendet man periodische Zeitfunktionen $ f(t) $, die eine bestimmte Periodendauer $ T_P $ aufweisen. Die formale Schreibweise hierfür ist:

Methode

Periodische Zeitfunktion:

$ f(t) = f(t + i \cdot T_p) $, wobei $ i = 0, 1, 2, 3, 4,.... $

Nun möchten wir eine LAPLACE-Transformation für die periodische Zeitfunktion durchführen:

$ f(s) = int_0^\infty f(t) \cdot e^{-st} dt = \sum_{i = 0}^{\infty} \int_{iT_P}^{(i + 1)T_p} f(t) \cdot e^{-st} dt = \sum_{i = 0}^{\infty} e^{- i T_Ps} \cdot \int_0^{T_p} f(t) \cdot e^{-st} dt = \frac{1}{1 - e^{-T_ps}} \cdot \int_0^{T_P} f(t) \cdot e^{-st} dt $

Unsere LAPLACE-Transformierte $ f(s) $ einer periodischen Zeitfunktion $ f(t) $ mit
$ f(t) = f(t + i \cdot T_P) $ mit $ i = 0, 1, 2, 3, 4, ... $ hat somit die formale Schreibweise:

Methode

LAPLACE-Transformierte einer periodischen Zeitfunktion:

$ f(s) = L\{f(t)\} = \frac{1}{1 - e^{-T_p s}} \cdot \int_0^{T_P} f(t) \cdot e^{-st} dt $

Anwendungsbeispiel:

In der nachfolgenden Abbildung sehen Sie den Verlauf einer Sägezahnfunktion $ f(t) $ mit einer Periodendauer von $ T_P $. Wir möchten nun die LAPLACE-Transformierte dieser zeitlich periodischen Zeitfunktion bestimmen. 

Sägezahnfunktion
Sägezahnfunktion

Die Sägezahnfunktion $ f(t) = f_0 \cdot \frac{t}{T_P} $ hat folgendenden Gültigkeitsbereich: $ 0 \le t < T_P $.

Allgemein lässt sich unsere Sägezahnfunktion wie folgt darstellen:

Methode

$ f(t) = f_0 \cdot \frac{t + i \cdot T_P}{T_P} $ für $ i \cdot T_P \le t < (i + 1) \cdot T_P $ wobei $ i = 0, 1, 2, 3, 4, ....$

Unsere LAPLACE-Transformation hat dann die Form:

Methode

$ f(s) = \frac{1}{1 - e^{-T_ps}} \cdot \int_0^{T_p} f(t) \cdot e^{-st} dt$

Nach dem Einsetzen von $ f(t) = f_0 \cdot \frac{t}{T_P} $ ändert sich unsere LAPLACE-Transformierte zu:

$ f(s) = \frac{1}{1 - e^{-T_ps}} \cdot \int_0^{T_p} f(o) \cdot \frac{t}{T_P} \cdot e^{-st} dt$

Nun beginnen wir das Integral aufzulösen:

$ f(s) = \frac{f_0}{T_P} \cdot \frac{1}{1 - e^{-T_P s}} \cdot [ - \frac{ (1+ s \cdot t) \cdot e^{-st}}{s^2}]|_0^{T_P} $

$ \Longrightarrow $

$ f(s) = \frac{f_0}{T_P} \cdot \frac{1}{1 - e^{-T_P s}} \cdot [ - \frac{ (1+ s \cdot T_P) \cdot e^{-T_P s}}{s^2} + \frac{1}{s^2}] $

$ \Longrightarrow $

$ f(s) = \frac{f_0}{T_P} \cdot \frac{1 - (1 + T_P \cdot s) \cdot e^{-T_P s}}{(1 - e^{-T_Ps}) \cdot s^2} $

$ \Longrightarrow $

Als Lösung erhalten wir dann letztlich für unsere LAPLACE-Transformierte:

Methode

$ f(s) = \frac{f_0}{T_P} \cdot \frac{1 + T_P \cdot s - e^{T_P s}}{(1 - e^{T_Ps}) \cdot s^2} $
Vorstellung des Online-Kurses RegelungstechnikRegelungstechnik
Dieser Inhalt ist Bestandteil des Online-Kurses

Regelungstechnik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Regelungstechnik: Überblick
    • Einleitung zu Regelungstechnik: Überblick
  • Einführung in die Regelungstechnik
    • Einleitung zu Einführung in die Regelungstechnik
    • Steuerung
      • Einleitung zu Steuerung
      • Beispiel: Steuerung eines Füllstandes
      • Störgrößen
      • Steuerungstechnik
    • Regelung
      • Einleitung zu Regelung
      • Realisierungsvarianten und Regelungsgrößen
      • Definition der Regelung
    • Unterscheidung von Steuerung und Regelung
  • Darstellungsvarianten regelungstechnischer Strukturen
    • Einleitung zu Darstellungsvarianten regelungstechnischer Strukturen
    • Wirkungspläne und Signalflusspläne
      • Einleitung zu Wirkungspläne und Signalflusspläne
      • Elemente
        • Einleitung zu Elemente
        • Übertragungsblock & Wirkungslinie
        • Darstellung der Funktionen im Übertragungsblock
        • Verknüpfungselemente
      • Anwendungsbeispiele
        • Einleitung zu Anwendungsbeispiele
        • Fall 1 von 6: Regelstreckengleichung als Signalflussplan
        • Fall 2 von 6: Integrationsgleichung als Signalflussplan
        • Fall 3 von 6: Differentialgleichung als Signalflussplan
        • Fall 4 von 6: Elektrische Leistung als Signalflussplan
        • Fall 5 von 6: Variablen einer Masse als Signalflussplan
        • Fall 6 von 6: Gleichungen mit Proportionalelementen aus Regelkreis
      • Einfache Signalflussstrukuren
        • Einleitung zu Einfache Signalflussstrukuren
        • Kettenstruktur
        • Parallelstruktur
        • Kreisstruktur
          • Einleitung zu Kreisstruktur
          • Indirekte Gegenkopplung
          • Direkte Gegenkopplung
      • Regelkreis mit Proportional-Elementen
      • Anwendungsbeispiel: Ermittlung des Regelfaktors
      • Weitere Umformungsregeln für Wirkungspläne
        • Einleitung zu Weitere Umformungsregeln für Wirkungspläne
        • Übersicht der Umformungsregeln
        • Anwendungsbeispiel: Regelgröße
        • Anwendungsbeispiel: Übertragungsverhalten
  • Mathematische Methoden zur Regelkreisberechnung
    • Einleitung zu Mathematische Methoden zur Regelkreisberechnung
    • Normierung
    • Linearisierung
      • Einleitung zu Linearisierung
      • Definition
      • Grafische Verfahren
      • Analytische Verfahren
      • Mehrere Variablen
    • Differentialgleichungen
      • Einleitung zu Differentialgleichungen
      • Physikalische Systeme
      • Lösung linearer Differenzialgleichungen
        • Einleitung zu Lösung linearer Differenzialgleichungen
        • Überlagerung von Teillösungen
        • Homogene Differenzialgleichungen
          • Einleitung zu Homogene Differenzialgleichungen
          • Besonderheiten
        • Partikulare Lösung einer Differenzialgleichung
        • Anwendungsbeispiel: Lösung einer DGL
  • Testfunktionen
    • Einleitung zu Testfunktionen
    • Testfunktionen als Vergleichsmöglichkeit
    • Impulsfunktion, Impulsantwort
    • Sprungfunktion, Sprungantwort
    • Anstiegsfunktion, Anstiegsantwort
    • Harmonische Funktionen
  • LAPLACE Transformation
    • Einleitung zu LAPLACE Transformation
    • Mathematische Transformation
      • Einleitung zu Mathematische Transformation
      • Original- und Bildbereich
    • LAPLACE-Transformation
    • LAPLACE-Rücktransformation
    • Anwendungsarten der LAPLACE-Transformation
      • Einleitung zu Anwendungsarten der LAPLACE-Transformation
      • Verstärkungsprinzip, Überlagerungsprinzip
      • Verschiebesätze, Dämpfungssatz
      • Multiplikationssätze
      • Ähnlichkeitssatz
      • Differenziationssatz, Integrationssatz
      • Faltungssatz
      • Grenzwertsätze
      • Periodische Funktionen
  • Frequenzgang
    • Einleitung zu Frequenzgang
    • Dynamisches Verhalten im Frequenzbereich
    • Frequenzgang
    • Frequenzgang aus Differenzialgleichung
    • Frequenzgang einer Differenzialgleichung mit harmonischer Anregung
    • Übertragungsfunktion
    • Ortskurve
    • BODE-diagramm
    • Sprungantwort
  • 79
  • 7
  • 82
  • 121
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Phillipp Grünewald

    Phillipp Grünewald

    "ingenieurkurse.de hat mir besonders bei den Mathe-Themen geholfen. Super Erklärungen!"
  • Martina Pfeiffer

    Martina Pfeiffer

    "Klasse für den Einstieg ins Ingenieurstudium."
  • Marcel Eberhardt

    Marcel Eberhardt

    "Ich mache mir dank euch keine Sorgen für die Prüfungen. Danke!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen