ZU DEN KURSEN!

Regelungstechnik - LAPLACE-Rücktransformation

Kursangebot | Regelungstechnik | LAPLACE-Rücktransformation

Regelungstechnik

LAPLACE-Rücktransformation

x
Juracademy JETZT WEITER LERNEN!

Weitere Lernvideos sowie zahlreiche Materialien für deine Prüfungsvorbereitung erwarten dich:
ingenieurkurse.de Flatrate


1764 Lerntexte mit den besten Erklärungen

179 weitere Lernvideos von unseren erfahrenen Dozenten

2441 Übungen zum Trainieren der Inhalte

2388 informative und einprägsame Abbildungen

Um nun wieder die Zeitfunktion $ f(t) $ ermitteln zu können, verwenden wir ausgehend von der LAPLACE-Transformation $ f(s)$ eine komplexe Umkehrformel, die LAPLACE-Rücktransformation. Die LAPLACE-Rücktransformation wird formal beschrieben durch:

Methode

LAPLACE-Rücktransformation:       

$ f(t) = \frac{1}{2 \; \pi \; j} \oint f(s) \cdot e^{st} \; ds = L^{-1} \{f(s) \}$

Beachten Sie bei der Rücktransformation darauf, dass Sie den geschlossenen Integrationsweg in der komplexen Zahlenebene um alle Polstellen der LAPLACE-transformierten $ f(s) $ führen.

Als Polstellen der LAPLACE-Transformierten $ f(s) $ bezeichnet man alle Werte von s, bei denen der Nenner von $ f(s)$ die Null sind. 


Bei der LAPLACE-Rücktransformation kommt der Residuensatz zum Einsatz. Dies äußert sich in Bezug auf die vorherige Gleichung in der formalen Schreibweise, wie folgt:

Methode

LAPLACE-Rücktransformation mit Residuensatz: 

$ f(t) = \frac{1}{2 \; \pi \; j} \oint f(s) \cdot e^{st} \; ds = \sum_{i=1}^{n} Res[f(s) \cdot e^{st} ] $

 
Die Zeitfunktion $ f(t) $ entspricht dabei der Summe aller Residuen an allen Polstellen von $ f(s) \cdot e^{st}$. Die formale Schreibweise für ein Residuum einer k-fachen Polstelle $ s = s_{p1} $ ist:

Methode

Residuum: 

$ Res|_{s = s_{p1}} = \frac{1}{(k-1)!} \cdot \frac{d^{k-1}}{ds^{k-1}} \cdot [f(s) \cdot e^{st} \cdot (s - s_{p1})^k|_{s = s_{p1}} $
Anwendungsbeispiel:

Beispiel

Dies auf den ersten Blick nicht gerade einfache Vorgehen möchten wir Ihnen anhand der nachfolgenden Beispiele für eine einfachedreifache und k-fache Polstelle näherbringen.


1. einfache Polstelle

Methode

LAPLACE-transformierte Funktion: $ f (s) = \frac{1}{s + a} $        mit $ k = 1 $ und $ s_{p1} = -a $


Die zugehörige Zeitfunktion hat dann die Form:

Methode

Zeitfunktion: $ f(t) = Res|_{s = -a} = \frac{1}{(1-1)!} \cdot \frac{d^0}{ds^0} [ \frac{1}{s + a} \cdot e^{st} \cdot (s + a)]|_{s = -a} = e^{-at}$. 


2. dreifache Polstelle

Methode

LAPLACE-transformierte Funktion bei $ s_1 = 0: f(s) = \frac{1}{s^3} $     mit $ k = 3 $ und $ s_1 = 0 $


Die zugehörige Zeitfunktion ist dabei:

Methode

Zeitfunktion: $ f(t) = Res|_{s = 0 } = \frac{1}{(3-1)!} \cdot t^{3-1} \cdot e^{0 \cdot t} = \frac{1}{2} \cdot t^2 $


3. k-fache Polstelle

Methode

LAPLACE-transformierte Funktion: $ f(s) = \frac{1}{(s + a)^k} $      mit $ k > 1 $ und $ s_{p1} = -a $


Die zugehörige Zeitfunktion ist:

Methode

Zeitfunktion: $ Res|_{s = -a} = \frac{1}{(k -1)!} \cdot \frac{d^{k-1}}{ds^{k-1}} \cdot [ \frac{1}{(s + a)^k} \cdot e^{st} \cdot (s + a)^k]|_{s = -a} = \frac{1}{(k - 1)!} \cdot t^{k-1} \cdot e^{-at}$.

Video: LAPLACE-Rücktransformation

In diesem Abschnitt wird die LAPLACE-Rücktransformation behandelt.