ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Technische Mechanik 2: Elastostatik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Stabbeanspruchungen > Materialgesetz / Zugversuch:

Spannungs-Dehnungs-Diagramm

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Das Ergebnis des Zugversuchs (vorheriger Abschnitt) kann innerhalb eines Spannungs-Dehnungs-Diagramms veranschaulicht werden. Das Spannungs-Dehnungs-Diagramm dient hauptsächlich der Charakterisierung eines Materials hinsichtlich Festigkeit, Plastizität und Elastizität. Es hat sich dabei durchgesetzt, dass die Spannung [in $\frac{N}{mm^2} $] über die Dehnung [dimensionslos] aufgetragen wird. Das bedeutet, dass die Spannung $\sigma$ auf der Ordinate aufgetragen wird und die Dehnung $\epsilon$ auf der Abszisse. Ferner unterscheidet man die technische Spannungs-Dehnungs-Kurve von der wahren Spannungs-Dehnungs-Kurve. Da die wahre Spannung nicht direkt aus dem Zugversuch heraus bestimmt werden kann, bevorzugt man die technische Spannung, die sich immer auf den Ausgangsquerschnitt $\ A_0 $ bezieht.

Im Spannungs-Dehnungs-Diagramm unterteilt man die Bereiche in

  • einen linear-elastischen Bereich $\rightarrow $ Dehnung verläuft proportional zur Spannung und ist reversibel;
  • einen nichtlinear-elastischen Bereich $\rightarrow $ Dehnung verläuft nicht proportional zur Spannung, ist aber reversibel;
  • einen plastischen Bereich $\rightarrow $ Dehnung ist nicht reversibel und Verformung bleibt auch nach Entlastung bestehen. 

Elastischer Bereich

Innerhalb des elastischen Bereiches verschwindet die Verformung wieder vollständig, wenn die Spannung nicht mehr wirkt. Ist die Belastung nicht groß genug, damit Atomwanderungen hervorgerufen werden, so bleibt es bei einer elastischen Verfomung. Die Bauteile sollten grundsätzlich nur so starker Belastung ausgesetzt werden, dass eine elastische Verformung vorliegt. 

Der elastische Bereich kann aufgegliedert werden in einen linear-elastischen Bereich und in einen nichtlinear-elastischen Bereich.

Der linear-elastische Bereich reicht bis zur Proportionalitätsgrenze. Das bedeutet die Spannung ist proportional zur Dehnung (Proportionalbereich, „Hookesche Gerade“). Berechnen kann man die Verformung unter einer Last mit dem Hookschen Gesetz (nächster Abschnitt).

Der nichtlinear-elastische Bereich reicht bis zur Streckgrenze $R_e$. Der lineare Zusammenhang zwischen Spannung und Dehnung ist nicht mehr gegeben. Es findet zwar immer noch die elastische Verformung statt, jedoch findet unter der steigenden Krafteinwirkung eine stärkere Dehnung statt. Die Dehnung ist also größer als die zunehmende Spannung.

Plastischer Bereich

Innerhalb dieses Bereiches ist die Dehnung nicht reversibel, d.h. das Bauteil findet nicht in seine ursprüngliche Form zurück. Die Verformung die entstanden ist, ist zum Teil elastisch und somit reversibel, nur ein bestimmter Teil ist plastisch und bleibt dauerhaft bestehen. Im Extremfall kann es auch zum Bruch des Bauteils kommen, wenn die Belastung zu groß ist. Grundsätzlich kann man die folgenden Bereiche innerhalb des plastischen Bereichs unterscheiden:

Fließbereich

Erhöht man die Spannung geringfügig, kann es bereits zur Überschreitung der Proportionalitätsgrenze kommen. Das Material beginnt zu fließen, wenn mit zunehmender Dehnung die Spannung gleich bleibt oder sogar sinkt. Hier kommt es zu ersten plastischen Verformungen. Dieser Bereich wird Streckgrenze (oder Fließgrenze) genannt. Ist innerhalb der Fließgrenze ein Abfallen der Spannung zu verzeichnen, dann wird der Bereich, in dem das Material fließt, in eine untere und obere Streckgrenze unterteilt. Es wird als erstes die obere Streckgrenze erreicht, was mit einem ersten, plötzlichen Qualitätsverlust einhergeht. Die benötigte Spannung, um das Material weiter zu dehnen, nimmt dadurch sofort ab und erreicht den niedrigsten Fließpunkt (untere Streckgrenze). Nach Überschreiten der Streckgrenze (obere oder untere) ist das Material nicht mehr reversibel und gelangt nicht mehr in seine ursprüngliche Form zurück.

Materialverfestigung

Erhöht man die Spannung weiter, bilden sich im Kristallgitter stehende Versetzungen, die die noch gleitenden Versetzungen an ihrer Bewegung hindern. Es kommt zu einer Verfestigung des Materials, da die Spannung im Kristallgitter weiter zunimmt. Die Spannung muss so sehr stark erhöht werden, damit weitere plastische Verformungen entstehen. Irgendwann ist allerdings das Kraftmaximum des Materials erreicht und es beginnt einzuschnüren.

Einschnürung

Die Einschnürungen entstehen, wenn im Kristallgitter des Materials die vielen Versetzungen nicht mehr zu einer Verfestigung führen, sondern zur Bildung von Hohlräumen. Die Hohlräume führen auch dazu, dass der Querschnitt des Materials abnimmt. Das bedeutet, dass die Kraft auf einen immer kleiner werdenden Querschnitt wirkt (Spannung nimmt also zu). Irgendwann wird die Einschnürung so stark, sodass der verkürzte Querschnitt die Spannung nicht mehr halten kann. Das Material reißt.

Spannungs-Dehnungs-Diagramm
Spannungs-Dehnungs-Diagramm

Jeder Werkstoff hat ein anderes Spannungs-Dehnungs-Diagramm. Manche Werkstoffe besitzen keine Streckgrenze, d.h. es erfolgt ein kontinuierlicher Übergang zwischen dem elastischen und dem plastischen Bereich. Diese haben dann beispielsweise eine Dehngrenze innerhalb des plastischen Bereichs. Eine Dehngrenze von $R_{p0,2}$ beispielsweise bedeutet, dass nach der Wegnahme der Belastung eine Dehnung des Werkstoffes von 0,2% bleibt. Andere Werkstoffe haben einen Fließbereich, aber keine obere und untere Streckgrenze, da die Spannung konstant bleibt (nicht aber absinkt) während die Dehnung zunimmt.

Merke

Aus dem Spannungs-Dehnungs-Diagramm kann die elastische und plastische Verformungsgrenze, sowie die maximale Zugstärke (Festigkeitsgrenze) und Bruchgrenze abgelesen werden. So kann herausgefunden werden, wie viel Kraft ein Werkstoff (in Bezug auf den Querschnitt) aufnehmen kann, ohne dass es zu dauerhaften Verformungen kommt.

Multiple-Choice
Bitte die richtigen Aussagen auswählen.
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Spannungs-Dehnungs-Diagramm ist Teil eines interaktiven Online-Kurses zum Thema Technische Mechanik 2: Elastostatik.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Technische Mechanik 2: ElastostatikTechnische Mechanik 2: Elastostatik
Dieser Inhalt ist Bestandteil des Online-Kurses

Technische Mechanik 2: Elastostatik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Elastostatik
    • Einleitung zu Kurs: Elastostatik
  • Grundlagen
    • Grundlegende Annahmen der Elastostatik
    • Statisches Gleichgewicht
    • Beanspruchungsarten
  • Stabbeanspruchungen
    • Allgemeine Definition der Spannung
    • Spannungen im Stab
      • Einleitung zu Spannungen im Stab
      • Prinzip von St. Venant
      • Spannung im Stab (senkrechter Schnitt)
      • Spannungen im Stab (Schnitt mit Winkel)
      • Beispiel zu Spannungen im Stab: Konischer Stab
      • Beispiel zu Spannungen im Stab: Hängender Zugstab
    • Dehnung im Stab
      • Dehnung im Stab (konstante Dehnung)
      • Dehnung (Stabelement)
    • Materialgesetz / Zugversuch
      • Einleitung zu Materialgesetz / Zugversuch
      • Spannungs-Dehnungs-Diagramm
      • Hookesches Gesetz
    • Wärmedehnungen
    • Verformungen quer zur Stabachse
      • Querdehnungen
      • Volumendehnungen
      • Schubverformungen
    • Differentialgleichung eines Stabes
    • Zusammenfassung der Grundgleichungen für den Stab
    • Statisch bestimmte Stabwerke
      • Statisch bestimmte Stabwerke (Einzelstab)
        • Einleitung zu Statisch bestimmte Stabwerke (Einzelstab)
        • Beispiel: Belastung durch Kraft am Stabende (ohne Linienkraft)
        • Beispiel: Belastung durch Kraft am Stabende (mit Linienkraft)
      • Statisch bestimmte Stabwerke (Stabzweischlag)
    • Statisch unbestimmte Stabwerke
      • Statisch unbestimmte Stabwerke (Einzelstab)
      • Statisch unbestimmte Stabwerke (Dreistab)
  • Mehrachsige Spannungszustände
    • Allgemeine Annahmen
    • Ebener Spannungszustand
      • Einleitung zu Ebener Spannungszustand
      • Ebener Spannungszustand: Koordinatentransformation
      • Beispiel 1: Koordinatentransformation
      • Ebener Spannungszustand: Zugeordnete Schubspannungen
      • Beispiel 2: Koordinatentransformation
      • Sonderfälle des ebenen Spannungszustandes
    • Hauptspannungen
      • Einleitung zu Hauptspannungen
      • Extremwerte der Normalspannungen (Hauptnormalspannungen)
      • Extremwerte der Schubspannungen (Hauptschubspannungen)
      • Formelsammlung Koordinatentransformation und Schnittwinkeländerung
      • Beispiele: Hauptspannungen
        • Beispiel 1: Hauptspannungen
        • Beispiel 2: Hauptspannungen
    • Mohrscher Spannungskreis
      • Einleitung zu Mohrscher Spannungskreis
      • Beispiel: Mohrscher Spannungskreis
    • Ebener Verzerrungszustand
      • Zusammenhang von Verschiebungen und Verzerrungen
        • Einleitung zu Zusammenhang von Verschiebungen und Verzerrungen
        • Verträglichkeitsbedingungen
        • Verzerrungstensor
      • Transformation von Verzerrungskomponenten
      • Hauptdehnungen
    • Räumlicher Verzerrungszustand
    • Hooksche Gesetz für mehrachsige Spannungszustände
      • Hookesches Gesetz im ebenen Spannungszustand
        • Einleitung zu Hookesches Gesetz im ebenen Spannungszustand
        • Hookesches Gesetz: Hauptdehnungen und Hauptspannungen
      • Hookesches Gesetz im ebenen Verzerrungszustand
      • Hookesches Gesetz für den räumlichen Spannungszustand
        • Einleitung zu Hookesches Gesetz für den räumlichen Spannungszustand
        • Hookesches Gesetz mit Wärmedehnungen
      • Beispiele: Hookesches Gesetz für mehrachsige Spannungszustände
  • Balkenbiegung
    • Einleitung zu Balkenbiegung
    • Arten der Biegung
    • Flächenträgheitsmomente
      • Einleitung zu Flächenträgheitsmomente
      • Flächenträgheitsmomente: Definition
      • Deviationsmomente unterschiedlicher Flächen
      • Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
      • Beispiel zu Flächenträgheitsmomenten: Rechteck
      • Beispiel: Flächenträgheitsmomente Dreieck
      • Flächenträgheitsmomente: Koordinatentransformation
      • Hauptträgheitsmomente / Hauptachsen
      • Satz von Steiner (Parallelverschiebung der Achsen)
      • Satz von Steiner für zusammengesetzte Flächen
    • Gerade bzw. einachsige Biegung
      • Einleitung zu Gerade bzw. einachsige Biegung
      • Reine Biegung
        • Einleitung zu Reine Biegung
        • Normalspannung bei reiner Biegung
        • Maximale Normalspannung bei reiner Biegung
        • Widerstandsmoment bei reiner Biegung
      • Querkraftbiegung
        • Einleitung zu Querkraftbiegung
        • Beispiel: Querkraftbiegung bei einachsiger Biegung
      • Beispiele: Normalspannungen bei einachsiger Balkenbiegung
        • Beispiel: Spannungsmaximum bei reiner Biegung
        • Beispiel: Widerstandsmoment, zulässige Spannung
      • Balkenverformung bei einachsiger Biegung
        • Einleitung zu Balkenverformung bei einachsiger Biegung
        • Differentialgleichung der elastischen Biegelinie
        • Lösung der Differentialgleichung (elastische Biegelinie)
        • Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Einleitung zu Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Lösung von Einbereichsaufgaben (Biegelinie)
          • Biegelinie mit Streckenlast
          • Lösung von Mehrbereichsaufgaben (Biegelinie)
        • Superpositionsprinzip
        • Statisch unbestimmt gelagerte Balken
      • Anhang: Biegelinie für unterschiedliche Balkenbelastungen
      • Übersicht Formeln: Einachsige Biegung
    • Schiefe bzw. zweiachsige Biegung
    • Gerade und schiefe Biegung mit Zug
  • Torsion
    • Torsion von Wellen
      • Einleitung zu Torsion von Wellen
      • mit Kreisquerschnitt
        • Einleitung zu mit Kreisquerschnitt
        • Beispiel 1: Torsion beim Kreisquerschnitt
      • mit Kreisringquerschnitt
    • Torsion von dünnwandigen, geschlossenen Profile
    • Torsion von dünnwandigen, offenen Profilen
  • Schub
    • Balkenverformung infolge von Schub
    • Schub bei dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen offenen Profilen
    • Schubmittelpunkt bei dünnwandigen offenen Profilen
  • Festigkeitshypothesen
    • Einleitung zu Festigkeitshypothesen
    • Hauptnormalspannungshypothese
    • Hauptschubspannungshypothese
    • Gestaltänderungsenergiehypothese
  • Stabilität und Knickung
    • Stabilitätsfälle und Gleichgewichtslagen
    • Eulersche Fälle der Stabknickung
      • Einleitung zu Eulersche Fälle der Stabknickung
      • Kritische Knickkraft
      • Kritische Knickspannung
  • 108
  • 17
  • 132
  • 214
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 14.04.2016:
    "Ich studiere Maschinenbau als Fernstudium und leider sind einige Studienheft lückenhaft und schwer verständlich geschrieben. Dieser Kurs ist das Beste was ich mir vorstellen kann!!! Ich bin so froh, dass ich diesen Kurs zufällig gefunden habe."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 26.01.2016:
    "Sehr gut, dass man Aufgaben erst selber rechnen kann und danach die Lösung erläutert wird."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 24.01.2016:
    "Tolles Programm! Super erklärt!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 07.10.2015:
    "Top"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 01.06.2015:
    "Ich schreibe zwar erst meinen Midterm in Mechanik 2 und war mir beim lernen immer unsicher wie genau ich ran gehen soll. Alte Midterms rechnen oder viel wissen aneignen? Wo kriege ich, dass wissen gut erklärt her? Bei eurem Kurs muss man sich keine Gedanken mehr machen alles ist sehr übersichtlich und gut aufbereitet. Mir macht der Kurs spaß. Danke für eure Arbeit!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 11.05.2015:
    "Super!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen