ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Operations Research 1
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Netzplantechnik > Zeitplanung:

Beispiel 2: Vorgangsknotennetzplan

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Beispiel

Der Vorgang 2 (9 Monate) beginnt 3 Monate nach Ende von Vorgang 1 (5 Monate), der Vorgang 3 (8 Monate) beginnt nach Ende von Vorgang 1. Der Vorgang 4 (6 Monate) beginnt 5 Monate nach Beginn von Vorgang 2, der Vorgang 5 (3 Monate) beginnt nach Ende von Vorgang 2 und 2 Monate nach Ende von Vorgang 3. Vorgang 6 (6 Monate) beginnt nach Ende von Vorgang 5 und 1 Monat nach Vorgang 4.

Stellen Sie den Vorgangsknotennetzplan auf (Mindestabstand der Normalfolge) und bestimmen Sie die frühestmöglichen und spätestmöglichen Anfangs- und Endzeitpunkte.

Der Vorgangsknotennetzplan ergibt sich wie folgt:

Vorgangsknotennetzplan Kostenplanung Beispiel

Die Pfeilbewertung (-4) ergibt sich wie folgt:

Der Vorgang 4 beginnt 5 Monate nach Beginn von Vorgang 2. Hierbei handelt es sich um eine Anfangsfolge (AA). Es soll aber der Mindestabstand der Normalfolge gewählt werden. Anders ausgedrückt: 4 Monate vor Ende von Vorgang 2 beginnt Vorgang 4. (EA-Beziehung).

Die frühestmöglichen und spätestmöglichen Anfangs- und Endzeitpunkte sind in der nachfolgenden Tabelle aufgeführt:

Kostenplanung Zeitplanung Netzplantechnik

Kritische Vorgänge ergeben sich dort wo der Gesamtpuffer 0 ist. Der Weg entlang der kritischen Vorgänge ist der kritische Pfad. Die Verzögerung eines kritischen Vorganges führt zur gesamten Verzögerung des Projektes.

Vorstellung des Online-Kurses Operations ResearchOperations Research
Dieser Inhalt ist Bestandteil des Online-Kurses

Operations Research 1

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Operations Research 1 - Lineare Optimierung, Graphentheorie und Netzplantechnik
    • Einleitung zu Kurs: Operations Research 1 - Lineare Optimierung, Graphentheorie und Netzplantechnik
  • Lineare Programmierung
    • Einleitung zu Lineare Programmierung
    • Definition: Lineares Programm
    • Standardform: Maximierungsproblem
      • Einleitung zu Standardform: Maximierungsproblem
      • Grafische Lösung eines Maximierungsproblems
        • Einleitung zu Grafische Lösung eines Maximierungsproblems
        • Beispiel: Grafische Lösung eines Maximierungsproblems
      • Umformung in die Standardform (Maximierungsproblem)
      • Umformung in die Normalform (Maximierungsproblem)
      • Simlpex-Algorithmus: Einführung
        • Einleitung zu Simlpex-Algorithmus: Einführung
        • Primales Simlpexverfahren
          • Einleitung zu Primales Simlpexverfahren
          • Primales Simplexverfahren: Anfangstableau aufstellen
          • Primales Simplexverfahren: Pivotspalte/-zeile/-element
          • Primales Simplexverfahren: 1. Simplexschritt
          • Primales Simplexverfahren: Weitere Simplexschritte (optimale Lösung)
          • Beispiel: Maximierungsproblem / grafische Lösung
          • Beispiel: Maximierungsproblem / Primales Simplexverfahren
        • Duales Simplexverfahren
          • Einleitung zu Duales Simplexverfahren
          • Duales Simplexverfahren: Pivotzeile/-spalte/-element
          • Duales Simplexverfahren: Simplexschritte
        • Die Big-M-Methode des primalen Simplexverfahrens
          • Einleitung zu Die Big-M-Methode des primalen Simplexverfahrens
          • Die Big-M-Methode: Einfügen von künstlichen Variablen
          • Die Big-M-Methode: Künstliche Variablen als Basisvariablen
          • Big-M-Methode: Simplexschritt durchführen
          • Big-M-Methode: Weiterer Simplexschritt (zulässige Lösung)
          • Big-M-Methode: Weitere Simplexschritte (optimale Lösung)
      • Kanonische Form, Standardform, Normalform
      • Zusammenfassung: Maximierungsproblem
    • Minimierungsproblem
      • Einleitung zu Minimierungsproblem
      • Dualität - Primalproblem als Maximierungsproblem
      • Dualität - Primalproblem als Minimierungsproblem
      • Dualität - Dualproblem in Primalproblem
      • Beispiel: Primalproblem als Minimierungsproblem
      • Minimierungsproblem- Big-M/dualer Simplex
      • Zusammenfassung: Minimierungsproblem
    • Sonderfälle bei Optimierungsmodellen
      • Einleitung zu Sonderfälle bei Optimierungsmodellen
      • Beispiel: Minimierungsproblem ohne optimal Lösung
    • Sensitivitätsanalyse
      • Einleitung zu Sensitivitätsanalyse
      • Änderung der Zielfunktionskoeffizienten
        • Einleitung zu Änderung der Zielfunktionskoeffizienten
        • Beispiel: Sensitivitätsanalyse Zielfunktionskoeffizienten
      • Änderung der Restriktionen
    • Obere und untere Schranken bei Variablen
      • Untere Schranken
      • Obere Schranken
        • Einleitung zu Obere Schranken
        • Beispiel: Primaler Simplexalgorithmus
        • Beispiel: Vielzahl an beschränkten Variablen
    • Revidierter Simplex-Algorithmus
      • Einleitung zu Revidierter Simplex-Algorithmus
      • Beispiel: Revidierter Simplex-Algorithmus
  • Transport- und Zuordnungsprobleme
    • Das klassische Transportproblem
      • Einleitung zu Das klassische Transportproblem
      • Ausgleichsprüfung
      • Reduktion der Kostenmatrix
      • Eröffnungsverfahren
        • Einleitung zu Eröffnungsverfahren
        • Nord-Westecken-Verfahren
        • Rangfolgeverfahren
          • Einleitung zu Rangfolgeverfahren
          • Spaltenfolgeverfahren
          • Zeilenfolgeverfahren
          • Matrixminimumverfahren
        • Vogelsches-Approximations-Verfahren
      • Optimierungsverfahren
        • Einleitung zu Optimierungsverfahren
        • Stepping-Stone-Methode
        • MODI-Methode
    • Lineare Zuordnungsprobleme
      • Definition: Zuordnungsprobleme
      • Ungarische Methode
  • Netzplantechnik
    • Einführung Netzplantechnik
    • Ablaufplanung
      • Einleitung zu Ablaufplanung
      • Strukturplanung
      • Netzplanerstellung
    • Zeitplanung
      • Einleitung zu Zeitplanung
      • Beispiel 1: Vorgangsknotennetzplan
      • Beispiel 2: Vorgangsknotennetzplan
    • Kostenplanung
    • Kapazitätsplanung
  • Graphentheorie
    • Einführung: Graphentheorie
    • Kürzeste Wege
      • Einleitung zu Kürzeste Wege
      • Dijkstra-Algorithmus
      • Fifo-Algorithmus
  • 74
  • 11
  • 42
  • 144
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Operations Research 1

    Ein Kursnutzer am 22.06.2016:
    "top!! ;)"

  • Gute Bewertung für Operations Research 1

    Ein Kursnutzer am 05.12.2015:
    "Super erklärt !! "

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen