Kursangebot | Regelungstechnik | Anwendungsbeispiel: Übertragungsverhalten

Regelungstechnik

Anwendungsbeispiel: Übertragungsverhalten

In diesem Anwendungsbeispiel soll nun das Übertragungsverhalten von $ x_a $ in Abhängigkeit von $ x_e $ ermittelt werden. Hierzu wollen wir den vorliegenden Wirkungsplan schrittweise vereinfachen.

Übertragungselemente
Übertragungselemente

 

1. Schritt: Zusammenfassen von $ F_{21} $ und $ F_{22} $ durch Verwendung der Umformungsregel 2

2. Umformung
1. Umformung

 

$ F_2 = F_{21} \cdot F_{22} $

2. Schritt: zusammenfassen von $ F_{31} $ und $ F_{32} $ durch Verwendung der Umformungsregel 1

2. Umformung
2. Umformung

 

$ F_3 = F_{31} + F_{32} $

3. Schritt: Verschieben von $ F_5 $ durch Verwendung der Umformungsregel 6

3. Umformung
3. Umformung

 

4. Schritt: Erzeugung einer Kreisstruktur mit $ F_2 $ und $ F_3 \cdot F_5 $ durch Verwendung der Umformungsregel 3

4. Umformung
4. Umformung

5. Schritt: Zusammenfassen von $ F_1 $ und $ \frac{F_2}{1 + F_2 \cdot F_3 \cdot F_5} $ durch Verwendung der Umformungsregel 2

5. Umformung
5. Umformung

 

6. Schritt: Ersetzen der Kreisstruktur durch Verwendung der Umformungsregel 3

6. Umformung
6. Umformung

 

7. Schritt: Vereinfachen der Gleichung durch Verwendung der Umformungsregel 2

7. Umformung
7. Umformung

 

8. Schritt: Einsetzen der Werte für $ F_2 $ und $ F_3 $

8. Umformung
8. Umformung

 

9. Schritt: Aufstellung der notwendigen Gleichung zur Berechnung des Übertragungsverhaltens $ x_a $ in Abhängigkeit von $ x_e $

$ x_a = \frac{F_1 \cdot F_{21} \cdot F_{22} \cdot ( F_{31} + F_{32})}{1 + F_1 \cdot F_{21} \cdot F_{22} \cdot F_4 + F_{21} \cdot F_{22} \cdot (F_{31} + F_{32}) \cdot F_5} \cdot x_e $

Abschließend möchten wir Ihnen noch einmal die Anfangsform und die Endform des Wirkungsplan gegenüberstellen: 

Anfangsform und Endform
Anfangsform und Endform