Jetzt neu: Steuerrecht online lernen auf steuerkurse.de!
Kursangebot | Regelungstechnik | Frequenzgang

Regelungstechnik

Frequenzgang

Wir stellen uns ein Übertragungselement mit Eingangssignalen und Ausgangssignalen vor. Das Verhalten für eine Signalübertragung sollte bereits bekannt sein. Neu ist nun, dass es sich bei dem Eingangssignal um einen sinusförmigen Verlauf handelt.

Sinusförmiges Eingangssignal - Formal

Die formale Schreibweise hierfür ist:

Methode

Hier klicken zum AusklappenSinusförmiges Eingangssignal:
$ x_e(t) = \hat{x}_e \cdot sin(\omega t) $.

Sinusförmiges Ausgangssignal - Formal

Wenn wir nun weiter davon ausgehen, dass die anfangs auftretenden Einschwingvorgänge abgeklungen sind, so zeigt sich, dass sich die Ausgangsgröße $ x_e(j \omega) $ in eine harmonische Funktion ändert mit der gleichen Frequenz, aber einer anderen Amplitude und Phasenlage [ $ \rho(\omega) $] als die Eingangsgröße $ x_e(j \omega) $

Methode

Hier klicken zum AusklappenSinusförmiges Ausgangssignal:
$ x_a(t) = \hat{x}_a \cdot sin( \omega t + \rho(\omega)) $

Sowohl die Phasenverschiebung $ \rho(\omega) $ als auch das Amplitudenverhältnis $ \frac{\hat{x}_a (\omega)}{\hat{x}_e} $ sind direkt abhängig von der Kreisfrequenz $\omega $ des Eingangssignals $ x_e(t) $.

Merke

Hier klicken zum AusklappenWir werden nachfolgend immer die komplexe Darstellung sinusförmiger Signale verwenden um unsere Berechnungen zu vereinfachen.

Daher betrachten wir das Eingangssignal als Imaginärteil der komplexen Funktion:

$ x_e(t) = \hat{x}_e \cdot sin(\omega t) $

$\Longrightarrow $

$ x_e(\omega t) = \hat{x}_e \cdot (cos(\omega t) + j sin(\omega t)) $.

Eulersche Gleichung

Benutzen wir nun die EULERsche Gleichung mit $ (cos(\omega t) + j sin(\omega t)) = e^{j \omega t}) $, so werden unser Eingangssignal und Ausgangssignal jeweils zu:

Methode

Hier klicken zum AusklappenEingangssignal:
$ x_e(j \omega) = \hat{x}_e \cdot e^{j \omega t} $

$  $

Methode

Hier klicken zum AusklappenAusgangssignal:
$ x_a(j \omega) = \hat{x}_a \cdot e^{j(\omega t + \rho(\omega))} $ bzw. $ x_a(j \omega) = \hat{x}_a \cdot e^{j \omega t} \cdot e^{j \rho(\omega)} $

Frequenzgang - Formal

Merke

Hier klicken zum AusklappenDer Frequenzgang $ F( j \omega) $ des Übertragungssystems ergibt sich aus dem Quotienten von Ausgangssignal und Eingangssignal:

Methode

Hier klicken zum AusklappenFrequenzgang:
$ F ( j \omega) = \frac{x_a(j\omega)}{x_e(j \omega)} $

Eingesetzt dann:

Frequenzgang: $ F (j \omega) = \frac{\hat{x}_a \cdot e^{j \omega t} \cdot e^{j \rho(\omega)} }{ \hat{x}_e \cdot e^{j \omega t} }$

Durch entsprechendes Kürzen erhalten wir letztlich unsere finale Gleichung für den Frequenzgang mit:

Methode

Hier klicken zum AusklappenFrequenzgang:
$ F (j\omega) = \frac{\hat{x}_a (\omega)}{ \hat{x}_e} \cdot e^{j \rho(\omega)} $

Merke

Hier klicken zum AusklappenDu solltest Dir merken, dass der Frequenzgang immer das Verhältnis der sinusförmigen Ausgangsschwingung zur sinusförmigen Eingangsschwingung in komplexer Form für alle Kreisfrequenzen angibt. Daher ist der Frequenzgang eine komplexe Größe, die sich auf zweierlei Arten darstellen lässt.

1.Realteil und Imaginärteil: $ F (j \omega) = Re\{F (j\omega)\} + j Im\{F (j\omega)\} $

2. Betrag und Phase: $ F ( j \omega) = |F (j \omega)| \cdot e^{j\rho(\omega)} $

Die zugehörigen Gleichungen für den Betrag und die Phase sind:

Betrag: $ | F (j\omega)| = \sqrt{ Re^2\{F (j\omega)\} + Im^2\{F(j\omega)\}} $

Phase: $ \rho(\omega) = \rho\{ F(j\omega)\} = arctan \frac{Im\{F(j\omega)\}}{Re\{F (j\omega)\}} $

Merke

Hier klicken zum AusklappenWie Du siehst, tauchen hier in beiden Gleichungen wieder Realteil und Imaginärteil auf.