ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Regelungstechnik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
LAPLACE Transformation > Anwendungsarten der LAPLACE-Transformation:

Ähnlichkeitssatz

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Mit dem Ähnlichkeitssatz kann die unbekannte LAPLACE-Transformierte einer Zeitfunktion unter Kenntnis der LAPLACE-Tranformierten einer anderen Zeitfunktion berechnet werden. 

Merke

Mit dem Ähnlichkeitssatz lassen sich die Bildvariablen berechnen, wenn die Variable $ t $ mit einer Konstanten multipliziert wird. Die Bedingung hierfür ist, dass die Konstante $ a > 0 $ und reell ist.

 Die Gleichung für die LAPLACE-Transformierte ist wie folgt:

Methode

Ähnlichkeitssatz: $ L \{f(a\cdot t)\} = \frac{1}{a} \cdot f( \frac{s}{a}) $ sowie $ L\{f(\frac{t}{a})\} = a \cdot f(a\cdot s) $
Anwendungsbeispiel: 

Beispiel

Erneut liegt eine Sinusfunktion $ x_{e1}(t) $ vor. Wir möchten nun die LAPLACE-Transformierte von $ x_{e2}(t) $ bestimmen. 
Ähnlichkeitssatz
Ähnlichkeitssatz

Die Gleichung für die Sinusfunktion ist: $ x_{e1}(t) = sin (\omega_1 t) $

Für die LAPLACE-Transformation gilt dann:

Methode

$ x_{e1}(s) = L\{sin(\omega_1 t\} = \frac{\omega_1}{s^2 + \omega_1^2} $

Aus diesen  beiden Gleichungen lässt sich dann die LAPLACE-Transformierte der Zeitfunktion $ x_{e2}(t)$, also

Methode

$ x_{e2}(t) = \sin(\omega_2 t) = \sin(\omega_2 t), $ mit $ \omega_2 = 0,5 \cdot \omega_1 $

unter Verwendung des Ähnlichkeitssatzes berechnen:

Methode

$ x_{e2}(s) = L \{sin(\omega_2 t)\} = L\{sin(0,5 \cdot \omega_1 t)\} = \frac{1}{0,5} \cdot \frac{\omega_1}{(\frac{s}{0,5})^2 + \omega_1^2} = \frac{0,5 \cdot \omega_1}{s^2 + ( 0,5 \cdot \omega_1)^2} $

Im zweiten Schritt ist es dann auch kein Problem mehr die zweite Zeitfunktion grafisch darzustellen:

Ähnlichkeitssatz
Ähnlichkeitssatz

Merke

Kurz gesagt: Liegen zwei bekannte Zeitfunktionen vor, von denen zudem für die eine die LAPLACE-Transformierte bekannt ist, sowie eine Verhältnisangabe (hier  $ \omega_2 = 0,5 \cdot \omega_1 $) , so kann mit dem Ähnlichkeitssatz die unbekannte LAPLACE-Transformierte der anderen Zeitfunktion berechnet werden. 
Vorstellung des Online-Kurses RegelungstechnikRegelungstechnik
Dieser Inhalt ist Bestandteil des Online-Kurses

Regelungstechnik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Regelungstechnik: Überblick
    • Einleitung zu Regelungstechnik: Überblick
  • Einführung in die Regelungstechnik
    • Einleitung zu Einführung in die Regelungstechnik
    • Steuerung
      • Einleitung zu Steuerung
      • Beispiel: Steuerung eines Füllstandes
      • Störgrößen
      • Steuerungstechnik
    • Regelung
      • Einleitung zu Regelung
      • Realisierungsvarianten und Regelungsgrößen
      • Definition der Regelung
    • Unterscheidung von Steuerung und Regelung
  • Darstellungsvarianten regelungstechnischer Strukturen
    • Einleitung zu Darstellungsvarianten regelungstechnischer Strukturen
    • Wirkungspläne und Signalflusspläne
      • Einleitung zu Wirkungspläne und Signalflusspläne
      • Elemente
        • Einleitung zu Elemente
        • Übertragungsblock & Wirkungslinie
        • Darstellung der Funktionen im Übertragungsblock
        • Verknüpfungselemente
      • Anwendungsbeispiele
        • Einleitung zu Anwendungsbeispiele
        • Fall 1 von 6: Regelstreckengleichung als Signalflussplan
        • Fall 2 von 6: Integrationsgleichung als Signalflussplan
        • Fall 3 von 6: Differentialgleichung als Signalflussplan
        • Fall 4 von 6: Elektrische Leistung als Signalflussplan
        • Fall 5 von 6: Variablen einer Masse als Signalflussplan
        • Fall 6 von 6: Gleichungen mit Proportionalelementen aus Regelkreis
      • Einfache Signalflussstrukuren
        • Einleitung zu Einfache Signalflussstrukuren
        • Kettenstruktur
        • Parallelstruktur
        • Kreisstruktur
          • Einleitung zu Kreisstruktur
          • Indirekte Gegenkopplung
          • Direkte Gegenkopplung
      • Regelkreis mit Proportional-Elementen
      • Anwendungsbeispiel: Ermittlung des Regelfaktors
      • Weitere Umformungsregeln für Wirkungspläne
        • Einleitung zu Weitere Umformungsregeln für Wirkungspläne
        • Übersicht der Umformungsregeln
        • Anwendungsbeispiel: Regelgröße
        • Anwendungsbeispiel: Übertragungsverhalten
  • Mathematische Methoden zur Regelkreisberechnung
    • Einleitung zu Mathematische Methoden zur Regelkreisberechnung
    • Normierung
    • Linearisierung
      • Einleitung zu Linearisierung
      • Definition
      • Grafische Verfahren
      • Analytische Verfahren
      • Mehrere Variablen
    • Differentialgleichungen
      • Einleitung zu Differentialgleichungen
      • Physikalische Systeme
      • Lösung linearer Differenzialgleichungen
        • Einleitung zu Lösung linearer Differenzialgleichungen
        • Überlagerung von Teillösungen
        • Homogene Differenzialgleichungen
          • Einleitung zu Homogene Differenzialgleichungen
          • Besonderheiten
        • Partikulare Lösung einer Differenzialgleichung
        • Anwendungsbeispiel: Lösung einer DGL
  • Testfunktionen
    • Einleitung zu Testfunktionen
    • Testfunktionen als Vergleichsmöglichkeit
    • Impulsfunktion, Impulsantwort
    • Sprungfunktion, Sprungantwort
    • Anstiegsfunktion, Anstiegsantwort
    • Harmonische Funktionen
  • LAPLACE Transformation
    • Einleitung zu LAPLACE Transformation
    • Mathematische Transformation
      • Einleitung zu Mathematische Transformation
      • Original- und Bildbereich
    • LAPLACE-Transformation
    • LAPLACE-Rücktransformation
    • Anwendungsarten der LAPLACE-Transformation
      • Einleitung zu Anwendungsarten der LAPLACE-Transformation
      • Verstärkungsprinzip, Überlagerungsprinzip
      • Verschiebesätze, Dämpfungssatz
      • Multiplikationssätze
      • Ähnlichkeitssatz
      • Differenziationssatz, Integrationssatz
      • Faltungssatz
      • Grenzwertsätze
      • Periodische Funktionen
  • Frequenzgang
    • Einleitung zu Frequenzgang
    • Dynamisches Verhalten im Frequenzbereich
    • Frequenzgang
    • Frequenzgang aus Differenzialgleichung
    • Frequenzgang einer Differenzialgleichung mit harmonischer Anregung
    • Übertragungsfunktion
    • Ortskurve
    • BODE-diagramm
    • Sprungantwort
  • 79
  • 7
  • 82
  • 121
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Phillipp Grünewald

    Phillipp Grünewald

    "ingenieurkurse.de hat mir besonders bei den Mathe-Themen geholfen. Super Erklärungen!"
  • Martina Pfeiffer

    Martina Pfeiffer

    "Klasse für den Einstieg ins Ingenieurstudium."
  • Marcel Eberhardt

    Marcel Eberhardt

    "Ich mache mir dank euch keine Sorgen für die Prüfungen. Danke!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen