ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Regelungstechnik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
LAPLACE Transformation > Anwendungsarten der LAPLACE-Transformation:

Multiplikationssätze

WebinarTerminankündigung aus unserem Online-Kurs Technische Mechanik 3: Dynamik:
 Am 06.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Dynamik) Gradlinige Bewegung eines Massenpunktes
- Dieses 60-minütige Gratis-Webinar behandelt die geradlinige Bewegung eines Massenpunktes.
[weitere Informationen] [Terminübersicht]

Als Ergänzung zum Verschiebungssatz im Frequenzbereich, also dem Dämpfungssatz, möchten wir kurz auf die Multiplikationssätze für eine Transformation von trigonometrischen (sin, cos) und hyperbolischen Funktionen (sinh, cosh) eingehen.

Trigonometrische Funktionen:

1. transformierte Sinusfunktion: 

Methode

$ L \{sin(at) \cdot f(t)\} = L \{ \frac{e^{+j a t} - e^{- j a t}}{2j} \cdot f(t) \} = \frac{f(s - ja) - f (s + ja)}{2j} $
2. transformierte Cosinusfunktion:

Methode

$ L \{cos(at) \cdot f(t)\} = L \{ \frac{e^{+j a t} + e^{- j a t}}{2} \cdot f(t) \} = \frac{f(s - ja) + f (s + ja)}{2} $

Hyperbolische Funktionen:

1. transformierter Sinus Hyperbolicus, Hyperbelsinus:

Methode

$ L \{sinh(at) \cdot f(t)\} = L \{ \frac{e^{+ a t} - e^{-  a t}}{2} \cdot f(t) \} = \frac{f(s - a) - f (s + a)}{2} $
2. transformierter Cosinus Hyperbolicus, Hyperbelcosinus:

Methode

$ L \{cosh(at) \cdot f(t)\} = L \{ \frac{e^{+ a t} + e^{-  a t}}{2} \cdot f(t) \} = \frac{f(s - a) + f (s + a)}{2} $
Anwendungsbeispiel:

Beispiel

In diesem Beispiel soll die LAPLACE-Transformierte für die Zeitfunktion $ sin (3 \cdot t) \cdot t^2 $ aufgestellt werden. Es handelt sich hierbei um eine Sinusfunktion. 

Unsere bekannten Kennzahlen sind:

  • $ a = 3 $
  • $ f(t) = t^2 $
  • $ f(s) = \frac{2}{s^3}$
  • $ f(s + ja) = \frac{2}{(s + ja)^3} $
  • $ f(s - ja) = \frac{2}{(s - ja)^3} $

Unsere LAPLACE-Transformierte für diese Sinusfunktion ist dann:

Methode

$ L\{sin(at) \cdot t^2\} = \frac{f(s - ja) - f(s + ja)}{2j}
= \frac{1}{2j} \cdot ( \frac{2}{(s - ja)^3} - \frac{2}{(s + ja)^3})
= \frac{2 \cdot a \cdot (3 \cdot s^2 -a^2)}{(s^2 + a^2)^3}
= \frac{6 \cdot( 3\cdot s^3 - 9)} {(s^2 + 9)^3} $
Vorstellung des Online-Kurses RegelungstechnikRegelungstechnik
Dieser Inhalt ist Bestandteil des Online-Kurses

Regelungstechnik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Regelungstechnik: Überblick
    • Einleitung zu Regelungstechnik: Überblick
  • Einführung in die Regelungstechnik
    • Einleitung zu Einführung in die Regelungstechnik
    • Steuerung
      • Einleitung zu Steuerung
      • Beispiel: Steuerung eines Füllstandes
      • Störgrößen
      • Steuerungstechnik
    • Regelung
      • Einleitung zu Regelung
      • Realisierungsvarianten und Regelungsgrößen
      • Definition der Regelung
    • Unterscheidung von Steuerung und Regelung
  • Darstellungsvarianten regelungstechnischer Strukturen
    • Einleitung zu Darstellungsvarianten regelungstechnischer Strukturen
    • Wirkungspläne und Signalflusspläne
      • Einleitung zu Wirkungspläne und Signalflusspläne
      • Elemente
        • Einleitung zu Elemente
        • Übertragungsblock & Wirkungslinie
        • Darstellung der Funktionen im Übertragungsblock
        • Verknüpfungselemente
      • Anwendungsbeispiele
        • Einleitung zu Anwendungsbeispiele
        • Fall 1 von 6: Regelstreckengleichung als Signalflussplan
        • Fall 2 von 6: Integrationsgleichung als Signalflussplan
        • Fall 3 von 6: Differentialgleichung als Signalflussplan
        • Fall 4 von 6: Elektrische Leistung als Signalflussplan
        • Fall 5 von 6: Variablen einer Masse als Signalflussplan
        • Fall 6 von 6: Gleichungen mit Proportionalelementen aus Regelkreis
      • Einfache Signalflussstrukuren
        • Einleitung zu Einfache Signalflussstrukuren
        • Kettenstruktur
        • Parallelstruktur
        • Kreisstruktur
          • Einleitung zu Kreisstruktur
          • Indirekte Gegenkopplung
          • Direkte Gegenkopplung
      • Regelkreis mit Proportional-Elementen
      • Anwendungsbeispiel: Ermittlung des Regelfaktors
      • Weitere Umformungsregeln für Wirkungspläne
        • Einleitung zu Weitere Umformungsregeln für Wirkungspläne
        • Übersicht der Umformungsregeln
        • Anwendungsbeispiel: Regelgröße
        • Anwendungsbeispiel: Übertragungsverhalten
  • Mathematische Methoden zur Regelkreisberechnung
    • Einleitung zu Mathematische Methoden zur Regelkreisberechnung
    • Normierung
    • Linearisierung
      • Einleitung zu Linearisierung
      • Definition
      • Grafische Verfahren
      • Analytische Verfahren
      • Mehrere Variablen
    • Differentialgleichungen
      • Einleitung zu Differentialgleichungen
      • Physikalische Systeme
      • Lösung linearer Differenzialgleichungen
        • Einleitung zu Lösung linearer Differenzialgleichungen
        • Überlagerung von Teillösungen
        • Homogene Differenzialgleichungen
          • Einleitung zu Homogene Differenzialgleichungen
          • Besonderheiten
        • Partikulare Lösung einer Differenzialgleichung
        • Anwendungsbeispiel: Lösung einer DGL
  • Testfunktionen
    • Einleitung zu Testfunktionen
    • Testfunktionen als Vergleichsmöglichkeit
    • Impulsfunktion, Impulsantwort
    • Sprungfunktion, Sprungantwort
    • Anstiegsfunktion, Anstiegsantwort
    • Harmonische Funktionen
  • LAPLACE Transformation
    • Einleitung zu LAPLACE Transformation
    • Mathematische Transformation
      • Einleitung zu Mathematische Transformation
      • Original- und Bildbereich
    • LAPLACE-Transformation
    • LAPLACE-Rücktransformation
    • Anwendungsarten der LAPLACE-Transformation
      • Einleitung zu Anwendungsarten der LAPLACE-Transformation
      • Verstärkungsprinzip, Überlagerungsprinzip
      • Verschiebesätze, Dämpfungssatz
      • Multiplikationssätze
      • Ähnlichkeitssatz
      • Differenziationssatz, Integrationssatz
      • Faltungssatz
      • Grenzwertsätze
      • Periodische Funktionen
  • Frequenzgang
    • Einleitung zu Frequenzgang
    • Dynamisches Verhalten im Frequenzbereich
    • Frequenzgang
    • Frequenzgang aus Differenzialgleichung
    • Frequenzgang einer Differenzialgleichung mit harmonischer Anregung
    • Übertragungsfunktion
    • Ortskurve
    • BODE-diagramm
    • Sprungantwort
  • 79
  • 7
  • 82
  • 121
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Phillipp Grünewald

    Phillipp Grünewald

    "ingenieurkurse.de hat mir besonders bei den Mathe-Themen geholfen. Super Erklärungen!"
  • Martina Pfeiffer

    Martina Pfeiffer

    "Klasse für den Einstieg ins Ingenieurstudium."
  • Marcel Eberhardt

    Marcel Eberhardt

    "Ich mache mir dank euch keine Sorgen für die Prüfungen. Danke!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen