ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Technische Mechanik 3: Dynamik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Kinematik eines Massenpunktes > Allgemeine Bewegung eines Massenpunktes > Beschleunigung eines Massenpunktes:

Bahnbeschleunigung

WebinarTerminankündigung:
 Am 06.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Dynamik) Gradlinige Bewegung eines Massenpunktes
- Dieses 60-minütige Gratis-Webinar behandelt die geradlinige Bewegung eines Massenpunktes.
[weitere Informationen] [Terminübersicht]

Bildet man aus dem Beschleunigungsvektor den Betrag, so erhält man den Betrag der Bahnbeschleunigung. Hierbei handelt es sich um einen Skalar:

Methode

Betrag der Bahnbeschleunigung: $|a| = |\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$     

Bahnbeschleunigung

Die Bahnbeschleunigung lässt sich bestimmen durch die 1. Ableitung der Bahngeschwindigkeit $v$ oder durch die 2. Ableitung der Bogenlänge $s$ nach der Zeit $t$:

Methode

Bahnbeschleunigung: $a = \frac{dv}{dt} = \frac{d^2s}{dt}$                 

Die Beschleunigung wird z.B. in den Einheiten $\frac{m}{s^2}$ oder $\frac{cm}{s^2}$ angegeben.

Merke

Die Bahnbeschleunigung $a$ ist positiv, wenn $\triangle v > 0$ (Geschwindigkeit wächst mit der Zeit) und negativ, wenn $\triangle v < 0$ (Geschwindigkeit wird mit der Zeit langsamer). Letzteres nennt sich auch verzögerte Bewegung, d.h. der Betrag der Geschwindigkeit $|v|$ nimmt mit der Zeit ab.
Normal- und Tangentialbeschleunigung

Die Bahnbeschleunigung $a$ lässt sich in eine Normalbeschleunigung und eine Tangentialbeschleunigung aufteilen:

Methode

$a = \sqrt{a_n^2 + a_t^2}$

Die betrachtete Bahnkurve kann im Punkt $P$ lokal durch einen Kreis (Krümmungskreis) angenähert werden. Der Mittelpunkt dieses Kreises ist der Krümmungsmittelpunkt
Die Tangentialbeschleunigung liegt (wie der Name bereits sagt) tangential zur Bahnkurve, die Normalbeschleunigung zeigt auf den lokalen Krümmungsmittelpunkt $M$ der Bahnkurve. 

Normalbeschleunigung Tangentialbeschleunigung
Normalbeschleunigung

Die Normalbeschleunigung ergibt sich zu:

Methode

 Normalbeschleunigung: $a_n = \frac{v^2}{\rho}$  

mit

$v$  Geschwindigkeit

$\rho$  Krümmungsradius (Abstand vom betrachteten Punkt zum Krümmungsmittelpunkt)

Die Normalbeschleunigung bezeichnet die Richtungsänderung eines Massenpunktes pro Zeit.

Tangentialbeschleunigung

Die Tangentialbeschleunigung ergibt sich zu:

Methode

Tangentialbeschleunigung: $a_t = \frac{dv}{dt}$  

Die Tangentialbeschleunigung bezeichnet die Geschwindigkeitsänderung pro Zeit, die ein Massepunkt auf einer gekrümmten Bahn tangential zu dieser erfährt. 

Merke

Ist die Tangentialbeschleunigung Null, so ändert der Körper nur seine Bewegungsrichtung. Der Betrag der Geschwindigkeit bleibt dabei konstant. Um den Betrag der Geschwindigkeit zu ändern, muss also eine Kraft wirken, die eine Komponente in Richtung des Tangentialvektors besitzt.

Mittlere Bahnbeschleunigung

Die mittlere Bahnbeschleunigung zwischen zwei festgelegten Punkten bestimmt sich aus dem Quotienten zwischen der Geschwindigkeitsdifferenz $\triangle v$ und der Zeitdifferenz $\triangle t$ zwischen diesen Punkten:

Methode

Mittlere Bahnbeschleunigung: $a_m = \frac{|\triangle v|}{\triangle t}$        

Die Geschwindigkeitsdifferenz $\triangle v$ zwischen zwei festgelegten Punkten A und B lässt sich berechnen, indem der Geschwindigkeitsvektor $\vec{v_A}$ vom Geschwindigkeitsvektor $\vec{v_B}$ subtrahiert wird. Es wird dann der Betrag der Geschwindigkeitsänderung gebildet. Für $\triangle t$ wird dann die Zeitdifferenz zwischen diesen beiden Punkten angegeben.

Multiple-Choice
Bitte die richtigen Aussagen auswählen.
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Vorstellung des Online-Kurses Technische Mechanik 3: DynamikTechnische Mechanik 3: Dynamik
Dieser Inhalt ist Bestandteil des Online-Kurses

Technische Mechanik 3: Dynamik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Einführungstext
    • Einleitung zu Einführungstext
  • Kinematik eines Massenpunktes
    • Einleitung zu Kinematik eines Massenpunktes
    • Definition: Massenpunkt
    • Allgemeine Bewegung eines Massenpunktes
      • Einleitung zu Allgemeine Bewegung eines Massenpunktes
      • Lage des Massenpunktes
      • Geschwindigkeit eines Massenpunktes
        • Geschwindigkeitsvektor
          • Einleitung zu Geschwindigkeitsvektor
          • Beispiele: Geschwindigkeitsvektor aus Bahnkurve
        • Bahngeschwindigkeit
          • Einleitung zu Bahngeschwindigkeit
          • Strecke zwischen zwei Punkten
          • Bahngeschwindigkeit und Bogenlänge
          • Mittlere Bahngeschwindigkeit
          • Beispiel: Geschwindigkeit berechnen
          • Beispiel: Geschwindigkeit, Boot auf einem Fluss
      • Beschleunigung eines Massenpunktes
        • Beschleunigungsvektor
        • Bahnbeschleunigung
          • Einleitung zu Bahnbeschleunigung
          • Beispiel: Bahnbeschleunigung
    • Geradlinige Bewegung eines Massenpunktes
      • Einleitung zu Geradlinige Bewegung eines Massenpunktes
      • Kinematische Grundaufgaben
        • Einleitung zu Kinematische Grundaufgaben
        • Kinematische Diagramme
          • Einleitung zu Kinematische Diagramme
          • Ort-Zeit-Diagramm
          • Geschwindigkeit-Zeit-Diagramm
          • Beschleunigung-Zeit-Diagramm
        • Gleichförmige Bewegung
          • Einleitung zu Gleichförmige Bewegung
          • Beispiel: Gleichförmige Bewegung
          • Beispiel: Geschwindigkeit, Auto
        • Gleichförmig beschleunigte Bewegung
          • Einleitung zu Gleichförmig beschleunigte Bewegung
          • Beispiel: Freier Fall
          • Beispiel: Senkrechter Wurf
        • Beschleunigung in Abhängigkeit von der Zeit
          • Einleitung zu Beschleunigung in Abhängigkeit von der Zeit
          • Beispiel: Ungleichförmige Bewegung
        • Beschleunigung in Abhängigkeit von der Geschwindigkeit
          • Einleitung zu Beschleunigung in Abhängigkeit von der Geschwindigkeit
          • Beispiel: Beschleunigung
        • Beschleunigung in Abhängigkeit vom Ort
          • Einleitung zu Beschleunigung in Abhängigkeit vom Ort
          • Beispiel: Funktion des Ortes
          • Beispiel: Abhängigkeit vom Ort
      • Zusammenfassung der kinematischen Grundaufgaben
    • Ebene Bewegung in Polarkoordinaten
      • Einleitung zu Ebene Bewegung in Polarkoordinaten
      • Sonderfall: Kreisbewegung
  • Kinetik des Massenpunktes
    • Einleitung zu Kinetik des Massenpunktes
    • Newtonsche Gesetze
    • Klassifizierung von Kräften
    • Newtonsche Grundgesetz
    • Inertialsystem
    • Prinzip von d'Alembert
    • Beispiele: Newtonsche Gesetze, d'Alembertsche Prinzip
      • Beispiel: Kiste in Ruhe
      • Beispiel: Vertikaler Wurf
      • Beispiel: Schiefer Wurf
    • Impulssatz und Impulsmomentensatz
      • Impulssatz
      • Stoßvorgänge
      • Drehimpuls / Drehimpulssatz
    • Arbeitssatz
    • Potential, Energiesatz
    • Leistung
  • Kinetik des Massenpunktsystems
    • Einleitung zu Kinetik des Massenpunktsystems
    • Massenmittelpunktsatz / Schwerpunktsatz
    • Gesamtimpuls / Impulssatz
    • Drehimpuls / Drehimpulssatz
    • Arbeitssatz
    • Energiesatz
    • Stoßvorgänge
      • Einleitung zu Stoßvorgänge
      • Stoßvorgänge - Definitionen
        • Einleitung zu Stoßvorgänge - Definitionen
        • Gerader, Zentrischer Stoß zweier Körper
          • Einleitung zu Gerader, Zentrischer Stoß zweier Körper
          • Beispiel: Gerader, zentrischer Stoß
        • Schiefer, zentrischer Stoß zweier Körper
          • Einleitung zu Schiefer, zentrischer Stoß zweier Körper
          • Beispiel: Schiefer, zentrischer Stoß
  • Kinematik des starren Körpers
    • Einleitung zu Kinematik des starren Körpers
    • Translation/Rotation
      • Einleitung zu Translation/Rotation
      • Rotation um eine feste Achse
      • Rotation um einen raumfesten Punkt
    • Allgemeine ebene Bewegung (starrer Körper)
    • Allgemeine räumliche Bewegung
    • Momentanzentrum
  • 72
  • 15
  • 105
  • 118
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Technische Mechanik 3: Dynamik

    Ein Kursnutzer am 11.07.2016:
    "super"

  • Gute Bewertung für Technische Mechanik 3: Dynamik

    Ein Kursnutzer am 05.01.2016:
    "bis jetzt sehr gut! "

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen