ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Technische Mechanik 2: Elastostatik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Balkenbiegung > Gerade bzw. einachsige Biegung > Balkenverformung bei einachsiger Biegung:

Differentialgleichung der elastischen Biegelinie

WebinarTerminankündigung aus unserem Online-Kurs Technische Mechanik 3: Dynamik:
 Am 06.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Dynamik) Gradlinige Bewegung eines Massenpunktes
- Dieses 60-minütige Gratis-Webinar behandelt die geradlinige Bewegung eines Massenpunktes.
[weitere Informationen] [Terminübersicht]

Merke

In diesem Abschnitt wird die Differentialgleichung der elastischen Biegelinie für eine einachsige Biegung hergeleitet. 

Man erinnere sich an die Spannungsberechnung für die gerade Biegung, von dort ist folgende Gleichung bekannt:

$ M_y = E\cdot I_{y} \varphi' $ 

Ferner ist auch diese Gleichung interessant:

$\tau_{xz} = G\gamma_{xz} = G(w' + \varphi) $

Und zuletzt die Gleichung zur Berechnung der Querkraft:

$ Q = \int_A \tau_{xz} dA $

Setzt man nun die 2. Gleichung in die 3. Gleichung ein, so folgt daraus: 

$ Q = \int_A G(w' + \varphi) dA $

mit $\gamma =  (w' + \varphi) $  (mittlere Gleitung)

Merke

Zur Vereinfachung rechnet man häufig mit einer mittleren Querschnittsneigung, obwohl die Schubspannung nicht gleichförmig verteilt ist. Diese Vorgehensweise ist zulässig, wenn ergänzend zur mittleren Gleitung auch ein Korrekturfaktor $\kappa_s $ berücksichtigt wird. Alternativ spricht man auch von einem Schubfaktor, welcher sich je nach Flächengeometrie ändert, aber meistens um den Wert 1 herum liegt.


Man erhält folglich für die Querkraft:

Methode

$\ Q = G \cdot A_s (w' + \varphi) $                      Elastizitätsgesetz für die Querkraft


Diese Gleichung beinhaltet mit

Methode

$\kappa_s \cdot A = A_s $                                                       Schubfläche

und im weiteren Umfang mit

Methode

$ G  A_s $                                                                                Schubsteifigkeit

Merke

Da im Folgenden der Balken aufgrund der Verhältnisse der Längenabmessungen zueinander als schubstarr angenommen wird, nimmt die Schubsteifigkeit sehr hohe Werte an ($GA_s \to \infty$). 

Wenn $G \cdot A_s \rightarrow \infty$, dann läuft die Gleitung $\gamma$ gegen null.

$\ \gamma = (w' + \varphi) = 0  \; \rightarrow \; w' = - \varphi $ 

Hier erkennt man, dass die Ableitung der Durchbiegekurve $w(x)$ der negativen Neigung eines Balkenquerschnitts entspricht. 

Balkenneigung Winkel

Betrachtet man die obige Abbildung genau, so lässt sich vermuten, dass der Tangentensteigungswinkel $\alpha$ dem Neigungswinkel $\varphi $ entspricht. Dies gilt es nun zu überprüfen: 

So ist $ \tan ( - \alpha) = w' $ für mittlere bis große Verformungen zulässig und

$ \tan (-\alpha) = - \alpha $ für kleine Verformungen. 

Aus diesen beiden Gleichungen folgt durch Gleichsetzen $w' = - \alpha = -\varphi$.

Differentialgleichung der Biegelinie

Nachdem nun alle relevanten Gleichungen erfasst sind, kann mit Hilfe dieser die Differentialgleichung der Biegelinie aufgestellt werden. Aus $ M_y = E\cdot I_{y} \varphi' $ und $w' = - \varphi $  folgt dann:

Methode

$ M_y = -E \cdot I_{y} w'' $                 


Umstellen der obigen Gleichung nach $w''$ ergibt dann:

Methode

$ w'' = - \frac{M_y (x)}{E \cdot I_{y}} $               Differentialgleichung der Biegelinie

mit

$w''$ als zweite Ableitung der Durchbiegekurve und

$ E\cdot I_{y}$ als Biegesteifigkeit.

Durch zweifache Integration von $w''$ kann die Biegelinie bestimmt werden. Das $M_y(x)$ ist der Momentenverlauf, welcher von $x$ abhängig ist. Bei reiner Biegung ist dieser konstant $M_y(x) = M_y$, d.h. an jeder Stelle gleich. Bei Querkraftbiegung hingegen ist der Momentenverlauf abhängig davon, wo der Schnitt bei $x$ durchgeführt wird. 

Liegt eine Streckenlast vor, so kann die Berechnung wie folgt durchgeführt werden:

Methode

$EIw(x)^{IV} = q(x)$

mit

$EI$ konstant

In den nachfolgenden Abschnitten wird gezeigt wie man vorgehen muss, um die Differentialgleichung lösen zu können.

Kommentare zum Thema: Differentialgleichung der elastischen Biegelinie

  • Jessica Scholz schrieb am 13.09.2015 um 09:52 Uhr
    Hallo Herr Weschenbach, ich habe den Fehler gerade auch. Ich werde dem technischen Support sofort bescheid geben. Spätestens morgen sollte der Fehler behoben sein. Viele Grüße, Ihr Ingenieurkurse.de Team.
  • Marvin Weschenbach schrieb am 12.09.2015 um 10:55 Uhr
    Ja habe schon mehrmals aktualisiert aber es ändert sich leider nichts.
  • Jessica Scholz schrieb am 11.09.2015 um 18:53 Uhr
    Hallo Herr Weschenbach, haben Sie bereits versucht die Seite zu aktualisieren? Bei mir läuft alles ohne Probleme. Viele Grüße, Ihr Ingenieurkurse.de Team.
  • Marvin Weschenbach schrieb am 11.09.2015 um 14:31 Uhr
    Das Methodische Vorgehen ist kryptisch, wie änder ich das?
Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Differentialgleichung der elastischen Biegelinie ist Teil eines interaktiven Online-Kurses zum Thema Technische Mechanik 2: Elastostatik.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Technische Mechanik 2: ElastostatikTechnische Mechanik 2: Elastostatik
Dieser Inhalt ist Bestandteil des Online-Kurses

Technische Mechanik 2: Elastostatik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Elastostatik
    • Einleitung zu Kurs: Elastostatik
  • Grundlagen
    • Grundlegende Annahmen der Elastostatik
    • Statisches Gleichgewicht
    • Beanspruchungsarten
  • Stabbeanspruchungen
    • Allgemeine Definition der Spannung
    • Spannungen im Stab
      • Einleitung zu Spannungen im Stab
      • Prinzip von St. Venant
      • Spannung im Stab (senkrechter Schnitt)
      • Spannungen im Stab (Schnitt mit Winkel)
      • Beispiel zu Spannungen im Stab: Konischer Stab
      • Beispiel zu Spannungen im Stab: Hängender Zugstab
    • Dehnung im Stab
      • Dehnung im Stab (konstante Dehnung)
      • Dehnung (Stabelement)
    • Materialgesetz / Zugversuch
      • Einleitung zu Materialgesetz / Zugversuch
      • Spannungs-Dehnungs-Diagramm
      • Hookesches Gesetz
    • Wärmedehnungen
    • Verformungen quer zur Stabachse
      • Querdehnungen
      • Volumendehnungen
      • Schubverformungen
    • Differentialgleichung eines Stabes
    • Zusammenfassung der Grundgleichungen für den Stab
    • Statisch bestimmte Stabwerke
      • Statisch bestimmte Stabwerke (Einzelstab)
        • Einleitung zu Statisch bestimmte Stabwerke (Einzelstab)
        • Beispiel: Belastung durch Kraft am Stabende (ohne Linienkraft)
        • Beispiel: Belastung durch Kraft am Stabende (mit Linienkraft)
      • Statisch bestimmte Stabwerke (Stabzweischlag)
    • Statisch unbestimmte Stabwerke
      • Statisch unbestimmte Stabwerke (Einzelstab)
      • Statisch unbestimmte Stabwerke (Dreistab)
  • Mehrachsige Spannungszustände
    • Allgemeine Annahmen
    • Ebener Spannungszustand
      • Einleitung zu Ebener Spannungszustand
      • Ebener Spannungszustand: Koordinatentransformation
      • Beispiel 1: Koordinatentransformation
      • Ebener Spannungszustand: Zugeordnete Schubspannungen
      • Beispiel 2: Koordinatentransformation
      • Sonderfälle des ebenen Spannungszustandes
    • Hauptspannungen
      • Einleitung zu Hauptspannungen
      • Extremwerte der Normalspannungen (Hauptnormalspannungen)
      • Extremwerte der Schubspannungen (Hauptschubspannungen)
      • Formelsammlung Koordinatentransformation und Schnittwinkeländerung
      • Beispiele: Hauptspannungen
        • Beispiel 1: Hauptspannungen
        • Beispiel 2: Hauptspannungen
    • Mohrscher Spannungskreis
      • Einleitung zu Mohrscher Spannungskreis
      • Beispiel: Mohrscher Spannungskreis
    • Ebener Verzerrungszustand
      • Zusammenhang von Verschiebungen und Verzerrungen
        • Einleitung zu Zusammenhang von Verschiebungen und Verzerrungen
        • Verträglichkeitsbedingungen
        • Verzerrungstensor
      • Transformation von Verzerrungskomponenten
      • Hauptdehnungen
    • Räumlicher Verzerrungszustand
    • Hooksche Gesetz für mehrachsige Spannungszustände
      • Hookesches Gesetz im ebenen Spannungszustand
        • Einleitung zu Hookesches Gesetz im ebenen Spannungszustand
        • Hookesches Gesetz: Hauptdehnungen und Hauptspannungen
      • Hookesches Gesetz im ebenen Verzerrungszustand
      • Hookesches Gesetz für den räumlichen Spannungszustand
        • Einleitung zu Hookesches Gesetz für den räumlichen Spannungszustand
        • Hookesches Gesetz mit Wärmedehnungen
      • Beispiele: Hookesches Gesetz für mehrachsige Spannungszustände
  • Balkenbiegung
    • Einleitung zu Balkenbiegung
    • Arten der Biegung
    • Flächenträgheitsmomente
      • Einleitung zu Flächenträgheitsmomente
      • Flächenträgheitsmomente: Definition
      • Deviationsmomente unterschiedlicher Flächen
      • Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
      • Beispiel zu Flächenträgheitsmomenten: Rechteck
      • Beispiel: Flächenträgheitsmomente Dreieck
      • Flächenträgheitsmomente: Koordinatentransformation
      • Hauptträgheitsmomente / Hauptachsen
      • Satz von Steiner (Parallelverschiebung der Achsen)
      • Satz von Steiner für zusammengesetzte Flächen
    • Gerade bzw. einachsige Biegung
      • Einleitung zu Gerade bzw. einachsige Biegung
      • Reine Biegung
        • Einleitung zu Reine Biegung
        • Normalspannung bei reiner Biegung
        • Maximale Normalspannung bei reiner Biegung
        • Widerstandsmoment bei reiner Biegung
      • Querkraftbiegung
        • Einleitung zu Querkraftbiegung
        • Beispiel: Querkraftbiegung bei einachsiger Biegung
      • Beispiele: Normalspannungen bei einachsiger Balkenbiegung
        • Beispiel: Spannungsmaximum bei reiner Biegung
        • Beispiel: Widerstandsmoment, zulässige Spannung
      • Balkenverformung bei einachsiger Biegung
        • Einleitung zu Balkenverformung bei einachsiger Biegung
        • Differentialgleichung der elastischen Biegelinie
        • Lösung der Differentialgleichung (elastische Biegelinie)
        • Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Einleitung zu Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Lösung von Einbereichsaufgaben (Biegelinie)
          • Biegelinie mit Streckenlast
          • Lösung von Mehrbereichsaufgaben (Biegelinie)
        • Superpositionsprinzip
        • Statisch unbestimmt gelagerte Balken
      • Anhang: Biegelinie für unterschiedliche Balkenbelastungen
      • Übersicht Formeln: Einachsige Biegung
    • Schiefe bzw. zweiachsige Biegung
    • Gerade und schiefe Biegung mit Zug
  • Torsion
    • Torsion von Wellen
      • Einleitung zu Torsion von Wellen
      • mit Kreisquerschnitt
        • Einleitung zu mit Kreisquerschnitt
        • Beispiel 1: Torsion beim Kreisquerschnitt
      • mit Kreisringquerschnitt
    • Torsion von dünnwandigen, geschlossenen Profile
    • Torsion von dünnwandigen, offenen Profilen
  • Schub
    • Balkenverformung infolge von Schub
    • Schub bei dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen offenen Profilen
    • Schubmittelpunkt bei dünnwandigen offenen Profilen
  • Festigkeitshypothesen
    • Einleitung zu Festigkeitshypothesen
    • Hauptnormalspannungshypothese
    • Hauptschubspannungshypothese
    • Gestaltänderungsenergiehypothese
  • Stabilität und Knickung
    • Stabilitätsfälle und Gleichgewichtslagen
    • Eulersche Fälle der Stabknickung
      • Einleitung zu Eulersche Fälle der Stabknickung
      • Kritische Knickkraft
      • Kritische Knickspannung
  • 108
  • 17
  • 132
  • 214
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 14.04.2016:
    "Ich studiere Maschinenbau als Fernstudium und leider sind einige Studienheft lückenhaft und schwer verständlich geschrieben. Dieser Kurs ist das Beste was ich mir vorstellen kann!!! Ich bin so froh, dass ich diesen Kurs zufällig gefunden habe."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 26.01.2016:
    "Sehr gut, dass man Aufgaben erst selber rechnen kann und danach die Lösung erläutert wird."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 24.01.2016:
    "Tolles Programm! Super erklärt!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 07.10.2015:
    "Top"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 01.06.2015:
    "Ich schreibe zwar erst meinen Midterm in Mechanik 2 und war mir beim lernen immer unsicher wie genau ich ran gehen soll. Alte Midterms rechnen oder viel wissen aneignen? Wo kriege ich, dass wissen gut erklärt her? Bei eurem Kurs muss man sich keine Gedanken mehr machen alles ist sehr übersichtlich und gut aufbereitet. Mir macht der Kurs spaß. Danke für eure Arbeit!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 11.05.2015:
    "Super!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen