ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Technische Mechanik 2: Elastostatik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Stabbeanspruchungen > Spannungen im Stab:

Beispiel zu Spannungen im Stab: Konischer Stab

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]
Spannungen im Stab konischer Stab

Beispiel

Gegeben sei der obige konische Stab mit kreisförmigem Querschnitt, welcher durch die zwei Druckkräfte $F$ in der Stabachse belastet wird.

Bestimme die Normalspannung $\sigma$ bei beliebigem Querschnitt senkrecht zur Stabachse!

Da ein senkrechter Schnitt durchgeführt wird (Winkel 0°), wird nur die Normalspannung $\sigma_0$ auftreten. Diese ist definiert als

$\sigma_0 = \frac{N}{A}$

Hierbei handelt es sich allerdings um einen beliebigen Querschnitt, es soll also die allgemeine Normalspannung $\sigma_0$ berechnet werden in Abhängigkeit davon, wo genau der Schnitt durchgeführt wird. Hierzu wird ein Schnitt an einer beliebigen Stelle durchgeführt und der Abstand mit $x$ bezeichnet:

$\sigma_0 = \frac{N(x)}{A(x)}$

Um die Querschnittsfläche $A(x)$ (kreisförmig) zu berechnen, benötigt man den Radius, denn die Fläche eines Kreises wird berechnet durch $\pi \cdot r^2$. 

Berechnung des Radius

Spannungen im Stab Radius

In der obigen Grafik ist der Radius $r(x)$ veranschaulicht. Die grauen Pfeile deuten an, dass der Radius an jeder Stelle unterschiedlich groß ist. Es soll jetzt $r(x)$ berechnet werden in Abhängigkeit davon, wo der Schnitt durchgeführt wird. Dazu wird die Gerade (rote Linie) berechnet:

Spannungen im Stab Gerade

Dies geschieht indem man sich diese rote Gerade in einem Koordinatensystem vorstellt. Hierbei wird nur der obere Teil des konischen Stabes betrachtet, weil der Radius und nicht der Durchmesser betrachtet wird:

Spannungen am Stab Gerade

Dabei stellt $r_0$ den $y$-Wert dar, bei dem die Gerade beginnt. Die Gerade kann dann mittels der Geradengleichung $f(x) = ax + b$ berechnet werden. Hierzu werden die Randpunkte betrachtet:

$r(x = 0) = r_0$

$r(x = l) = 3r_0$

Es ist schon mal ersichtlich, dass die Gerade bei $r(0) = r_0$ beginnt. Das bedeutet $b = r_0$. Als nächstes ist die Steigung $a$ relevant. Diese berechnet sich, indem man den Ausgangspunkt der Geraden (also $r_0$) vom Endpunkt abzieht $3 r_0 - r_0 = 2r_0$. Das bedeutet, bei einem Schritt von $l$ in Richtung der positiven $x$-Achse und einem Schritt von $2r_0$ nach oben in Richtung der positiven $y$-Achse, erhält man die Gerade. Die Steigung ist demnach $a = \frac{2r_0}{l}$. Die Geradengleichung ist also:

$r(x) = \frac{2r_0}{l} x + r_0$

Wenn man sich nun beispielsweise in der Mitte des Stabes befindet bei $\frac{l}{2}$, dann ist der Radius:

$r(l/2) = \frac{2r_0}{l} \frac{l}{2} + r_0 = 2 r_0$

Berechnung der Fläche

Nachdem nun der Radius $r(x)$ ermittelt worden ist, wird als nächstes die Fläche berechnet. Die Querschnittsfläche stellt einen Kreis dar. Die Fläche eines Kreises wird berechnet durch:

$A(x) = r^2 \cdot \pi$.

$\rightarrow \; A(x) = (\frac{2r_0}{l} x + r_0)^2 \cdot \pi$.

Würde man nun den Schnitt in der Mitte des Stabes bei $\frac{l}{2}$ durchführen, dann wäre die Fläche 

$A(l/2) = (2r_0)^2 \cdot \pi = 4r_0^2 \cdot \pi$.

Berechnung der Normalspannung

Als nächstes muss die Normalkraft bestimmt werden. Diese ist immer senkrecht zur Querschnittsfläche:

Spannungen im Stab Normalkraft

Mittels der horizontalen Gleichgewichtsbedingung folgt:

$\rightarrow : F + N = 0 \rightarrow N = -F$

Die Normalspannung wird berechnet mit:

$\sigma_0 = \frac{N}{A} = \frac{-F}{A}$

Einsetzen von $A(x)$:

$\sigma_0 = \frac{-F}{(\frac{2r_0}{l} x + r_0)^2 \cdot \pi}$.

Das Minuszeichen bedeutet, dass es sich hierbei um eine Druckkraft handelt. Das $N$ ist gleich $-F$, muss also in die andere Richtung zeigen (hin zur negativen $x$-Achse). 

Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Beispiel zu Spannungen im Stab: Konischer Stab ist Teil eines interaktiven Online-Kurses zum Thema Technische Mechanik 2: Elastostatik.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Technische Mechanik 2: ElastostatikTechnische Mechanik 2: Elastostatik
Dieser Inhalt ist Bestandteil des Online-Kurses

Technische Mechanik 2: Elastostatik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Elastostatik
    • Einleitung zu Kurs: Elastostatik
  • Grundlagen
    • Grundlegende Annahmen der Elastostatik
    • Statisches Gleichgewicht
    • Beanspruchungsarten
  • Stabbeanspruchungen
    • Allgemeine Definition der Spannung
    • Spannungen im Stab
      • Einleitung zu Spannungen im Stab
      • Prinzip von St. Venant
      • Spannung im Stab (senkrechter Schnitt)
      • Spannungen im Stab (Schnitt mit Winkel)
      • Beispiel zu Spannungen im Stab: Konischer Stab
      • Beispiel zu Spannungen im Stab: Hängender Zugstab
    • Dehnung im Stab
      • Dehnung im Stab (konstante Dehnung)
      • Dehnung (Stabelement)
    • Materialgesetz / Zugversuch
      • Einleitung zu Materialgesetz / Zugversuch
      • Spannungs-Dehnungs-Diagramm
      • Hookesches Gesetz
    • Wärmedehnungen
    • Verformungen quer zur Stabachse
      • Querdehnungen
      • Volumendehnungen
      • Schubverformungen
    • Differentialgleichung eines Stabes
    • Zusammenfassung der Grundgleichungen für den Stab
    • Statisch bestimmte Stabwerke
      • Statisch bestimmte Stabwerke (Einzelstab)
        • Einleitung zu Statisch bestimmte Stabwerke (Einzelstab)
        • Beispiel: Belastung durch Kraft am Stabende (ohne Linienkraft)
        • Beispiel: Belastung durch Kraft am Stabende (mit Linienkraft)
      • Statisch bestimmte Stabwerke (Stabzweischlag)
    • Statisch unbestimmte Stabwerke
      • Statisch unbestimmte Stabwerke (Einzelstab)
      • Statisch unbestimmte Stabwerke (Dreistab)
  • Mehrachsige Spannungszustände
    • Allgemeine Annahmen
    • Ebener Spannungszustand
      • Einleitung zu Ebener Spannungszustand
      • Ebener Spannungszustand: Koordinatentransformation
      • Beispiel 1: Koordinatentransformation
      • Ebener Spannungszustand: Zugeordnete Schubspannungen
      • Beispiel 2: Koordinatentransformation
      • Sonderfälle des ebenen Spannungszustandes
    • Hauptspannungen
      • Einleitung zu Hauptspannungen
      • Extremwerte der Normalspannungen (Hauptnormalspannungen)
      • Extremwerte der Schubspannungen (Hauptschubspannungen)
      • Formelsammlung Koordinatentransformation und Schnittwinkeländerung
      • Beispiele: Hauptspannungen
        • Beispiel 1: Hauptspannungen
        • Beispiel 2: Hauptspannungen
    • Mohrscher Spannungskreis
      • Einleitung zu Mohrscher Spannungskreis
      • Beispiel: Mohrscher Spannungskreis
    • Ebener Verzerrungszustand
      • Zusammenhang von Verschiebungen und Verzerrungen
        • Einleitung zu Zusammenhang von Verschiebungen und Verzerrungen
        • Verträglichkeitsbedingungen
        • Verzerrungstensor
      • Transformation von Verzerrungskomponenten
      • Hauptdehnungen
    • Räumlicher Verzerrungszustand
    • Hooksche Gesetz für mehrachsige Spannungszustände
      • Hookesches Gesetz im ebenen Spannungszustand
        • Einleitung zu Hookesches Gesetz im ebenen Spannungszustand
        • Hookesches Gesetz: Hauptdehnungen und Hauptspannungen
      • Hookesches Gesetz im ebenen Verzerrungszustand
      • Hookesches Gesetz für den räumlichen Spannungszustand
        • Einleitung zu Hookesches Gesetz für den räumlichen Spannungszustand
        • Hookesches Gesetz mit Wärmedehnungen
      • Beispiele: Hookesches Gesetz für mehrachsige Spannungszustände
  • Balkenbiegung
    • Einleitung zu Balkenbiegung
    • Arten der Biegung
    • Flächenträgheitsmomente
      • Einleitung zu Flächenträgheitsmomente
      • Flächenträgheitsmomente: Definition
      • Deviationsmomente unterschiedlicher Flächen
      • Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
      • Beispiel zu Flächenträgheitsmomenten: Rechteck
      • Beispiel: Flächenträgheitsmomente Dreieck
      • Flächenträgheitsmomente: Koordinatentransformation
      • Hauptträgheitsmomente / Hauptachsen
      • Satz von Steiner (Parallelverschiebung der Achsen)
      • Satz von Steiner für zusammengesetzte Flächen
    • Gerade bzw. einachsige Biegung
      • Einleitung zu Gerade bzw. einachsige Biegung
      • Reine Biegung
        • Einleitung zu Reine Biegung
        • Normalspannung bei reiner Biegung
        • Maximale Normalspannung bei reiner Biegung
        • Widerstandsmoment bei reiner Biegung
      • Querkraftbiegung
        • Einleitung zu Querkraftbiegung
        • Beispiel: Querkraftbiegung bei einachsiger Biegung
      • Beispiele: Normalspannungen bei einachsiger Balkenbiegung
        • Beispiel: Spannungsmaximum bei reiner Biegung
        • Beispiel: Widerstandsmoment, zulässige Spannung
      • Balkenverformung bei einachsiger Biegung
        • Einleitung zu Balkenverformung bei einachsiger Biegung
        • Differentialgleichung der elastischen Biegelinie
        • Lösung der Differentialgleichung (elastische Biegelinie)
        • Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Einleitung zu Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Lösung von Einbereichsaufgaben (Biegelinie)
          • Biegelinie mit Streckenlast
          • Lösung von Mehrbereichsaufgaben (Biegelinie)
        • Superpositionsprinzip
        • Statisch unbestimmt gelagerte Balken
      • Anhang: Biegelinie für unterschiedliche Balkenbelastungen
      • Übersicht Formeln: Einachsige Biegung
    • Schiefe bzw. zweiachsige Biegung
    • Gerade und schiefe Biegung mit Zug
  • Torsion
    • Torsion von Wellen
      • Einleitung zu Torsion von Wellen
      • mit Kreisquerschnitt
        • Einleitung zu mit Kreisquerschnitt
        • Beispiel 1: Torsion beim Kreisquerschnitt
      • mit Kreisringquerschnitt
    • Torsion von dünnwandigen, geschlossenen Profile
    • Torsion von dünnwandigen, offenen Profilen
  • Schub
    • Balkenverformung infolge von Schub
    • Schub bei dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen offenen Profilen
    • Schubmittelpunkt bei dünnwandigen offenen Profilen
  • Festigkeitshypothesen
    • Einleitung zu Festigkeitshypothesen
    • Hauptnormalspannungshypothese
    • Hauptschubspannungshypothese
    • Gestaltänderungsenergiehypothese
  • Stabilität und Knickung
    • Stabilitätsfälle und Gleichgewichtslagen
    • Eulersche Fälle der Stabknickung
      • Einleitung zu Eulersche Fälle der Stabknickung
      • Kritische Knickkraft
      • Kritische Knickspannung
  • 108
  • 17
  • 132
  • 214
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 14.04.2016:
    "Ich studiere Maschinenbau als Fernstudium und leider sind einige Studienheft lückenhaft und schwer verständlich geschrieben. Dieser Kurs ist das Beste was ich mir vorstellen kann!!! Ich bin so froh, dass ich diesen Kurs zufällig gefunden habe."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 26.01.2016:
    "Sehr gut, dass man Aufgaben erst selber rechnen kann und danach die Lösung erläutert wird."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 24.01.2016:
    "Tolles Programm! Super erklärt!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 07.10.2015:
    "Top"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 01.06.2015:
    "Ich schreibe zwar erst meinen Midterm in Mechanik 2 und war mir beim lernen immer unsicher wie genau ich ran gehen soll. Alte Midterms rechnen oder viel wissen aneignen? Wo kriege ich, dass wissen gut erklärt her? Bei eurem Kurs muss man sich keine Gedanken mehr machen alles ist sehr übersichtlich und gut aufbereitet. Mir macht der Kurs spaß. Danke für eure Arbeit!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 11.05.2015:
    "Super!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen