ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Technische Mechanik 2: Elastostatik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse
Stabbeanspruchungen > Statisch unbestimmte Stabwerke:

Statisch unbestimmte Stabwerke (Einzelstab)

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

In diesem Abschnitt geht es um statisch unbestimmte Probleme. Diese lassen es nicht mehr zu, dass die Normalkraft $ N(x) $ eines Stabes allein aus der Gleichgewichtsbedingung heraus bestimmt werden kann. Die neue Gegebenheit erfordert eine Betrachtung aller Gleichungen gleichzeitig. Auch Wärmespannungen können durch Temperaturänderungen auftreten und müssen berücksichtigt werden. 

Zum besseren Verständnis folgt nun ein Anwendungsbeispiel:

Anwendungsbeispiel

Beispiel

Gegeben sei ein statisch unbestimmter Stab mit den Querschnittsflächen $ A_1 $ und $ A_2 $. Dieser Stab ist zwischen zwei starren Wänden gelagert. In horizontaler Richtung treten zwei Lagerkräfte A und B auf. Gesucht sind die Lagerreaktionen des rechten Bereichs, welcher um die Temperatur $\triangle T $ gleichmäßig erwärmt wird. 
Statisch unbestimmter Stab
Statisch unbestimmter Stab

Wieder stehen die drei bereits bekannten Gleichungen zur Verfügung:

1. Die Gleichgewichtsbedingung

2. Die kinematische Beziehung

3. Das Elastizitätsgesetz.

Gleichgewichtsbedingung

Zur Ermittlung steht nur eine Gleichgewichtsbedingung für den gesamten Stab zur Verfügung:

$\rightarrow: A - B = 0 \rightarrow A = B $ 

Es ist nicht möglich $A$ oder $B$ daraus zu bestimmen.

Kinematische Beziehung

Da nur eine Gleichgewichtsbedingung verfügbar ist, muss die Verformung berücksichtigt werden.

Kinematische Beziehungen
Kinematische Beziehungen

Die Normalkraft zeigt immer in (positive oder negative) x-Richtung. Wenn der Stab also geschnitten wird, folgt die Gleichgewichtsbedingung für den rechten Stabteil:

$\rightarrow : -N - B = 0 \rightarrow N = -B$.

Für den linken Stabteil gilt:

$\rightarrow : N + A = 0 \rightarrow N = -A$

Es folgt $N = -A = -B$. Des Weiteren gilt, dass die Gesamtlängenänderung $\triangle l = 0 $ sein muss, da der Stab zwischen zwei Wänden steckt und sich somit nicht Verlängern oder Verkürzen kann. Hieraus resultiert die geometrische Bedingung:

Methode

$\triangle l = \triangle l_1 + \triangle l_2 = 0 $                 Verträglichkeitsbedingung

Merke

Die Verträglichkeitsbedingungen (auch Kompatibilitätsbedingung genannt) beschreiben die Formulierung der Annahme, dass ein Körper bei der Verformung als zusammenhängendes Gefüge erhalten bleibt.

Für die Längenänderung der beiden Abschnitte muss jeweils gelten:

$\triangle l_1 = \frac{N l}{EA_1}$ und [der thermische Anteil fällt hier weg, da nur der rechte Stabteil erwärmt wird]

$\triangle l_2 = \frac{N l}{EA_2} + \alpha_{th} \triangle T \cdot l $

Eingesetzt erhält man schließlich:

 $\triangle l  = \frac{N l}{EA_1} + \frac{N l}{EA_2} + \alpha_{th} \triangle T \cdot l = 0 $

Elastizitätsgesetz

Durch die oben getroffenen Annahmen können nun die Lagerreaktionen bestimmt werden:

$ \frac{N l}{EA_1} + \frac{N l}{EA_2} + \alpha_{th} \triangle T \cdot l = 0 \rightarrow $ Auflösen nach $ N $:

$ \frac{N l}{EA_1} + \frac{N l}{EA_2} = -\alpha_{th} \triangle T \cdot l $  | $\cdot EA_1$ | $\cdot EA_2$

$ N l \cdot EA_2 + N l \cdot EA_1 = -\alpha_{th} \triangle T \cdot l \cdot EA_1 \cdot EA_2$

$N l E (A_2 + A_1) = -\alpha_{th} \triangle T \cdot l \cdot EA_1 \cdot EA_2$            |: $(A_2 + A_1)$

$N l E = -\frac{\alpha_{th} \triangle T \cdot l \cdot EA_1 \cdot EA_2}{A_2 + A_1}$      |: $l E$

$N = -\frac{\alpha_{th} \triangle T \cdot l \cdot EA_1 \cdot EA_2}{(A_2 + A_1) E l}$      | ein $E$ und $l$ kürzen

$N = -\frac{\alpha_{th} \triangle T \cdot EA_1 \cdot A_2}{A_2 + A_1}$

Da $N = -A = -B$ und die Lagerreaktionen $A$ und $B$ bestimmt werden sollen, folgt:

$ A = B = - N = \frac{\alpha_{th} \triangle T \cdot EA_1 \cdot A_2}{A_2 + A_1}$

Multiple-Choice
Wie lautet die Verträglichkeitsbedingung für statisch unbestimmte Stabwerke?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Statisch unbestimmte Stabwerke (Einzelstab) ist Teil eines interaktiven Online-Kurses zum Thema Technische Mechanik 2: Elastostatik.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Technische Mechanik 2: ElastostatikTechnische Mechanik 2: Elastostatik
Dieser Inhalt ist Bestandteil des Online-Kurses

Technische Mechanik 2: Elastostatik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Elastostatik
    • Einleitung zu Kurs: Elastostatik
  • Grundlagen
    • Grundlegende Annahmen der Elastostatik
    • Statisches Gleichgewicht
    • Beanspruchungsarten
  • Stabbeanspruchungen
    • Allgemeine Definition der Spannung
    • Spannungen im Stab
      • Einleitung zu Spannungen im Stab
      • Prinzip von St. Venant
      • Spannung im Stab (senkrechter Schnitt)
      • Spannungen im Stab (Schnitt mit Winkel)
      • Beispiel zu Spannungen im Stab: Konischer Stab
      • Beispiel zu Spannungen im Stab: Hängender Zugstab
    • Dehnung im Stab
      • Dehnung im Stab (konstante Dehnung)
      • Dehnung (Stabelement)
    • Materialgesetz / Zugversuch
      • Einleitung zu Materialgesetz / Zugversuch
      • Spannungs-Dehnungs-Diagramm
      • Hookesches Gesetz
    • Wärmedehnungen
    • Verformungen quer zur Stabachse
      • Querdehnungen
      • Volumendehnungen
      • Schubverformungen
    • Differentialgleichung eines Stabes
    • Zusammenfassung der Grundgleichungen für den Stab
    • Statisch bestimmte Stabwerke
      • Statisch bestimmte Stabwerke (Einzelstab)
        • Einleitung zu Statisch bestimmte Stabwerke (Einzelstab)
        • Beispiel: Belastung durch Kraft am Stabende (ohne Linienkraft)
        • Beispiel: Belastung durch Kraft am Stabende (mit Linienkraft)
      • Statisch bestimmte Stabwerke (Stabzweischlag)
    • Statisch unbestimmte Stabwerke
      • Statisch unbestimmte Stabwerke (Einzelstab)
      • Statisch unbestimmte Stabwerke (Dreistab)
  • Mehrachsige Spannungszustände
    • Allgemeine Annahmen
    • Ebener Spannungszustand
      • Einleitung zu Ebener Spannungszustand
      • Ebener Spannungszustand: Koordinatentransformation
      • Beispiel 1: Koordinatentransformation
      • Ebener Spannungszustand: Zugeordnete Schubspannungen
      • Beispiel 2: Koordinatentransformation
      • Sonderfälle des ebenen Spannungszustandes
    • Hauptspannungen
      • Einleitung zu Hauptspannungen
      • Extremwerte der Normalspannungen (Hauptnormalspannungen)
      • Extremwerte der Schubspannungen (Hauptschubspannungen)
      • Formelsammlung Koordinatentransformation und Schnittwinkeländerung
      • Beispiele: Hauptspannungen
        • Beispiel 1: Hauptspannungen
        • Beispiel 2: Hauptspannungen
    • Mohrscher Spannungskreis
      • Einleitung zu Mohrscher Spannungskreis
      • Beispiel: Mohrscher Spannungskreis
    • Ebener Verzerrungszustand
      • Zusammenhang von Verschiebungen und Verzerrungen
        • Einleitung zu Zusammenhang von Verschiebungen und Verzerrungen
        • Verträglichkeitsbedingungen
        • Verzerrungstensor
      • Transformation von Verzerrungskomponenten
      • Hauptdehnungen
    • Räumlicher Verzerrungszustand
    • Hooksche Gesetz für mehrachsige Spannungszustände
      • Hookesches Gesetz im ebenen Spannungszustand
        • Einleitung zu Hookesches Gesetz im ebenen Spannungszustand
        • Hookesches Gesetz: Hauptdehnungen und Hauptspannungen
      • Hookesches Gesetz im ebenen Verzerrungszustand
      • Hookesches Gesetz für den räumlichen Spannungszustand
        • Einleitung zu Hookesches Gesetz für den räumlichen Spannungszustand
        • Hookesches Gesetz mit Wärmedehnungen
      • Beispiele: Hookesches Gesetz für mehrachsige Spannungszustände
  • Balkenbiegung
    • Einleitung zu Balkenbiegung
    • Arten der Biegung
    • Flächenträgheitsmomente
      • Einleitung zu Flächenträgheitsmomente
      • Flächenträgheitsmomente: Definition
      • Deviationsmomente unterschiedlicher Flächen
      • Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
      • Beispiel zu Flächenträgheitsmomenten: Rechteck
      • Beispiel: Flächenträgheitsmomente Dreieck
      • Flächenträgheitsmomente: Koordinatentransformation
      • Hauptträgheitsmomente / Hauptachsen
      • Satz von Steiner (Parallelverschiebung der Achsen)
      • Satz von Steiner für zusammengesetzte Flächen
    • Gerade bzw. einachsige Biegung
      • Einleitung zu Gerade bzw. einachsige Biegung
      • Reine Biegung
        • Einleitung zu Reine Biegung
        • Normalspannung bei reiner Biegung
        • Maximale Normalspannung bei reiner Biegung
        • Widerstandsmoment bei reiner Biegung
      • Querkraftbiegung
        • Einleitung zu Querkraftbiegung
        • Beispiel: Querkraftbiegung bei einachsiger Biegung
      • Beispiele: Normalspannungen bei einachsiger Balkenbiegung
        • Beispiel: Spannungsmaximum bei reiner Biegung
        • Beispiel: Widerstandsmoment, zulässige Spannung
      • Balkenverformung bei einachsiger Biegung
        • Einleitung zu Balkenverformung bei einachsiger Biegung
        • Differentialgleichung der elastischen Biegelinie
        • Lösung der Differentialgleichung (elastische Biegelinie)
        • Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Einleitung zu Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Lösung von Einbereichsaufgaben (Biegelinie)
          • Biegelinie mit Streckenlast
          • Lösung von Mehrbereichsaufgaben (Biegelinie)
        • Superpositionsprinzip
        • Statisch unbestimmt gelagerte Balken
      • Anhang: Biegelinie für unterschiedliche Balkenbelastungen
      • Übersicht Formeln: Einachsige Biegung
    • Schiefe bzw. zweiachsige Biegung
    • Gerade und schiefe Biegung mit Zug
  • Torsion
    • Torsion von Wellen
      • Einleitung zu Torsion von Wellen
      • mit Kreisquerschnitt
        • Einleitung zu mit Kreisquerschnitt
        • Beispiel 1: Torsion beim Kreisquerschnitt
      • mit Kreisringquerschnitt
    • Torsion von dünnwandigen, geschlossenen Profile
    • Torsion von dünnwandigen, offenen Profilen
  • Schub
    • Balkenverformung infolge von Schub
    • Schub bei dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen offenen Profilen
    • Schubmittelpunkt bei dünnwandigen offenen Profilen
  • Festigkeitshypothesen
    • Einleitung zu Festigkeitshypothesen
    • Hauptnormalspannungshypothese
    • Hauptschubspannungshypothese
    • Gestaltänderungsenergiehypothese
  • Stabilität und Knickung
    • Stabilitätsfälle und Gleichgewichtslagen
    • Eulersche Fälle der Stabknickung
      • Einleitung zu Eulersche Fälle der Stabknickung
      • Kritische Knickkraft
      • Kritische Knickspannung
  • 108
  • 17
  • 132
  • 214
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 14.04.2016:
    "Ich studiere Maschinenbau als Fernstudium und leider sind einige Studienheft lückenhaft und schwer verständlich geschrieben. Dieser Kurs ist das Beste was ich mir vorstellen kann!!! Ich bin so froh, dass ich diesen Kurs zufällig gefunden habe."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 26.01.2016:
    "Sehr gut, dass man Aufgaben erst selber rechnen kann und danach die Lösung erläutert wird."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 24.01.2016:
    "Tolles Programm! Super erklärt!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 07.10.2015:
    "Top"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 01.06.2015:
    "Ich schreibe zwar erst meinen Midterm in Mechanik 2 und war mir beim lernen immer unsicher wie genau ich ran gehen soll. Alte Midterms rechnen oder viel wissen aneignen? Wo kriege ich, dass wissen gut erklärt her? Bei eurem Kurs muss man sich keine Gedanken mehr machen alles ist sehr übersichtlich und gut aufbereitet. Mir macht der Kurs spaß. Danke für eure Arbeit!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 11.05.2015:
    "Super!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen