ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Produktion
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse

Minimalkostenkombination

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Nachdem die Produktionsfunktion und die Kostenfunktion in den vorherigen Abschnitten erläutert wurden, stellt sich als nächstes die Frage, wie das kostenminimale Produktionsprogramm bestimmt werden kann.

Merke

Stehen einem Unternehmen mehrere Produktionsfaktormengenkombinationen zur Verfügung, um einen bestimmten Output $x$ zu erzielen, so hat es nach dem Rationalprinzip die Preise der Produktionsfaktoren $q_i$ zu berücksichtigen, um so die kostengünstigste Faktorkombination auswählen zu können.

Linear-limitationalen Kostenfunktionen

Die linear-limitatonale Kostenfunktion besitzt bereits eine vorgegeben Faktormengenkombination. Das bedeutet, dass die Kombination der Produktionsfaktoren ($r_1, ... , r_n$) bereits eindeutig und optimal ist und damit mit der Minimalkostenkombination übereinstimmt. 

Substitutionale Kostenfunktion

Bei der substitutionalen Kostenfunktion hingegen, existieren mehrere Möglichkeiten die Einsatzfaktoren ($r_1, ... , r_n$) miteinander zu kombinieren um den gewünschten Output $x$ zu erreichen. 

In der folgender Grafik ist die Isoquante einer substitutionalen Produktionsfunktion mit den beiden Einsatzfaktoren $r_1$ und $r_2$ eingezeichnet. Isoquanten sind Linien des gleichen Outputs, d.h. jeder beliebiger Punkt auf der Linien liefert identischen Output. Das bedeutet, dass dem Unternehmen mehrere Faktorkombinationen zur Verfügung stehen, um das Endprodukt zu erzielen. 

Isoquante einer substitutionalen Produktionsfunktion
Isoquante einer substitutionalen Produktionsfunktion

Unter Berücksichtigung der Preise für die Produktionsfaktoren $q_i$ und den Fixkosten $K_f$ sieht die Kostenfunktion wie folgt aus:

$K = q_1 r_1 + q_2 r_2 + K_f$

mit $K_v = q_1 r_1 + q_2 r_2$

Mit Einbeziehung der Kosten stellt sich die Frage, welche Faktorkombination unter Berücksichtigung der Faktorpreise kostenminimal ist?

Methode

Die Minimalkostenkombination ist die Faktorkombination, die bei gegebenem Output $x$ die geringsten Kosten produziert.

Die Minimalkostenkombination ist also ein Punkt auf der Isoquante bei dem die Faktorkombination so gewählt wird, dass die Kosten minimiert werden. Der Punkt auf der Isoquante ist genau dann eine Minimalkostenkombination, wenn

$\frac{\frac{\partial x}{dr_1}}{\frac{\partial x}{dr_2}} = \frac{q_1}{q_2}$


Anwendungsbeispiel: Minimalkostenkombination

Beispiel

Gegeben sei die substitutionale Produktionsfunktion $x = \frac{1}{4} \sqrt{r_1} r_2$ mit den Faktorpreisen $q_1 = 20$ und $q_2 = 16$. Wie sieht die Faktorkombination aus, für die die Kosten minimal sind?

Ableiten der Produktionsfunktion nach $r_1$ und nach $r_2$:

$\frac{\partial x}{dr_1} = \frac{1}{4} 0,5 r_1^{-0,5}  r_2 $

$\frac{\partial x}{dr_2} = \frac{1}{4} r_1^{0,5}$

Mit den Faktorpreisen gleichsetzen:

$\frac{\frac{\partial x}{dr_1}}{\frac{\partial x}{dr_2}} = \frac{q_1}{q_2}$

$\frac{\frac{1}{4} 0,5 r_1^{-0,5}  r_2}{\frac{1}{4} r_1^{0,5}} = \frac{20}{16}$

$\frac{0,5 r_2}{r_1} = \frac{20}{16}$              |$:0,5$

$\frac{r_2}{r_1} = 2,5 \; \rightarrow r_2 = 2,5r_1$

Das Faktorverhältnis ist also $2,5 : 1$ bzw. $r_2$ ist das 2,5-fache von $r_1$. Geht beispielsweise $r_1$ mit 5 Einheiten in das Produkt ein, so muss $r_2$ mit 12,5 Einheiten in das Produkt eingehen.

Video: Minimalkostenkombination

Stehen einem Unternehmen mehrere Produktionsfaktormengenkombinationen zur Verfügung, um einen bestimmten Output zu erzielen, so hat es nach dem Rationalprinzip die Preise der Produktionsfaktoren zu berücksichtigen, um so die kostengünstigste Faktorkombination auswählen zu können.
Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Minimalkostenkombination ist Teil eines interaktiven Online-Kurses zum Thema Produktion.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses ProduktionProduktion
Dieser Inhalt ist Bestandteil des Online-Kurses

Produktion

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Produktion
    • Einleitung zu Kurs: Produktion
  • Produktionssysteme
    • Einleitung zu Produktionssysteme
    • Definition der Produktion
    • Fertigung und Herstellung als Teil der Produktion
    • Zusammenspiel mit anderen betrieblichen Bereichen
    • Einordnung der Industriebetriebe
    • Klassifizierung von Produktionstypen
      • Einleitung zu Klassifizierung von Produktionstypen
      • Anordnungstypen
      • Ablauftypen
      • Repititionstypen
      • Produktionsstrukturtyp
      • Auftragstypen der Produktion
      • Mischformen und Kombinationen
    • Planung und Organisation
      • Einleitung zu Planung und Organisation
      • Hierarchieebenen des Managements
      • Zielformulierung der Produktionsplanung
      • Produktionsplanung
        • Einleitung zu Produktionsplanung
        • Zeitbezug der Produktionsplanung
        • Aggregationsgrad
      • Produktionsorganisation
        • Einleitung zu Produktionsorganisation
        • Einliniensysteme
        • Mehrliniensysteme
  • Einführung in die Produktions- und Kostentheorie
    • Einleitung zu Einführung in die Produktions- und Kostentheorie
    • Produktionsfaktoren
    • Produktionsfunktionen
      • Grundgleichung der Produktionsfunktion
      • Grundlegende Eigenschaften
        • Einleitung zu Grundlegende Eigenschaften
        • Substitutionalität
        • Limitationalität
      • Produktionsfunktionstypen
        • Einleitung zu Produktionsfunktionstypen
        • Leontief-Produktionsfunktion
        • Input-Output-Systeme
        • Gutenberg-Produktionsfunktion
    • Kostenfunktionen
      • Einleitung zu Kostenfunktionen
      • Arten von Kostenfunktionen
      • Begriffe der Kostenrechnung
        • Fixe und variable Kosten
        • Gesamtkosten, Grenzkosten, Durchschnittskosten
        • Deckungsbeitrag
        • Gewinnschwelle / Break-Even
    • Minimalkostenkombination
  • Aggregierte Produktionsplanung
    • Einleitung zu Aggregierte Produktionsplanung
    • Einstufige Produktionsprogrammplanung
      • Einleitung zu Einstufige Produktionsprogrammplanung
      • Einstufige einperiodige Produktionsprogrammplanung
        • Einleitung zu Einstufige einperiodige Produktionsprogrammplanung
        • Einperiode Produktionsprogrammplanung (ein Engpass)
        • Einperiodige Produktionsprogrammplanung (mehrere Engpässe)
      • Einstufige mehrperiodige Produktionsprogrammplanung
        • Einleitung zu Einstufige mehrperiodige Produktionsprogrammplanung
        • Prognosen zur Nachfrageentwicklung
          • Einleitung zu Prognosen zur Nachfrageentwicklung
          • Methode des gleitenden Durchschnitts
          • Exponentielle Glättung erster Ordnung
          • Exponentielle Glättung zweiter Ordnung
        • Kapazitätsabstimmung
          • Einleitung zu Kapazitätsabstimmung
          • Quantitative Kapazitätsabstimmung
          • Zeitliche Kapazitätsanpassung
        • Erzeugnislager
  • Materialbedarfsplanung
    • Einleitung zu Materialbedarfsplanung
    • Verbrauchsanalysen
      • Verbrauchswertanalyse (ABC-Analyse)
      • Verbrauchsverlaufanalyse (RSU-Analyse)
      • ABC/RSU-Analyse
    • Plangesteuerte Materialbedarfsplanung
    • Verbrauchsgesteuerte Materialbedarfsplanung
    • Losgrößenmodelle ohne Kapazitätsbeschränkungen
      • Einleitung zu Losgrößenmodelle ohne Kapazitätsbeschränkungen
      • Klassisches Losgrößenmodell
        • Einleitung zu Klassisches Losgrößenmodell
        • EOQ-Modell
      • Dynamisches Losgrößenmodell
        • Einleitung zu Dynamisches Losgrößenmodell
        • Wagner-Whitin-Verfahren
        • Silver-Meal-Verfahren
        • Verfahren nach Groff
      • Kostenausgleichsverfahren
  • Termin- und Kapazitätsplanung
    • Einleitung zu Termin- und Kapazitätsplanung
    • Durchlaufterminierung
    • Kapazitätsbelastungsausgleich
    • Auftragsfreigabe und Ablaufplanung
      • Einleitung zu Auftragsfreigabe und Ablaufplanung
      • Flow-Shop-Probleme
        • Einleitung zu Flow-Shop-Probleme
        • Johnson-Algorithmus
      • Job-Shop-Probleme
      • Produktionskontrolle
  • 75
  • 12
  • 148
  • 73
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Produktion

    Ein Kursnutzer am 12.02.2016:
    "Alle Super :) "

  • Gute Bewertung für Produktion

    Ein Kursnutzer am 15.03.2015:
    "Bis jetzt alles top erklärt."

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen