ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Technische Mechanik 1: Statik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse

Haftreibung

WebinarTerminankündigung aus unserem Online-Kurs Technische Mechanik 3: Dynamik:
 Am 06.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Dynamik) Gradlinige Bewegung eines Massenpunktes
- Dieses 60-minütige Gratis-Webinar behandelt die geradlinige Bewegung eines Massenpunktes.
[weitere Informationen] [Terminübersicht]

So lange die relative Bewegungsgeschwindigkeit $v$ zweier sich berührender Körper zueinander den Wert null besitzt, liegt Haftreibung vor.

Haftreibung, Geschwindigkeit = 0
Haftreibung, Geschwindigkeit = 0

Beispiel

Gäbe es Haftreibung nicht, wäre es für einen Menschen nicht möglich sich auf einer Oberfläche zu bewegen. Ein Fall, in dem die Haftreibung minimal wird, ist beispielsweise gefrierende Nässe auf dem Fußweg. Zur erneuten Erhöhung der Haftreibung ist dann das Streuen von Sand oder Schotter notwendig.

Die Haftung gilt, solange sich $F$ unterhalb eines bestimmten Grenzwertes $F_0$ befindet. Bei dem Grenzwert $F_0$ nimmt $H$ den maximalen Wert $H_0$ an. Dieser Grenzwert ist proportional abhängig von der Normalkraft $N$.

Dieser Zusammenhang wird durch das Coulombsche Haftungsgesetz beschrieben.

 $ H_0 = \mu_0 \cdot N $ 

mit

$ H_0 $: Grenzwert der Haftung 

$ \mu_0 $: Haftungskoeffizient (dimensionslos)

$ N $ : Normalkraft

Es können die Folgenden drei Fälle unterschieden werden:

Methode

Fallunterscheidung

$H < \mu_0 \cdot N$  Haftung:  Der Körper befindet sich in Ruhe.

$H = \mu_0 \cdot N$  Grenzhaftung:  Der Körper befindet sich in Ruhe. Wird dieser jedoch angestoßen, dann bewegt er sich.

$R = \mu \cdot N$  Gleitreibung: Der Körper bewegt sich und die Gleitreibung $R$ tritt anstelle der Haftreibung $H$. Es wird nun auch der Haftungskoeffizient $\mu_0$ durch den Reibungskoeffizienten $\mu$ ersetzt.

Merke

Die Haftreibung ist eine Reaktionskraft und kann bei statisch bestimmten Systemen aus den Gleichgewichtsbedingungen berechnet werden.

Resultierende

Es ist möglich die Normalkraft $N$ und die Haftreibung $H$ zu einer Resultierenden $NH$ zusammenzufassen. 

Haftreibung: Resultierende NH
Haftreibung: Resultierende NH

Die Richtung der Resultierenden wird mit dem Winkel $\varphi$ angegeben und berechnet sich durch:

$\tan \varphi = \frac{H}{N}$.

Im Grenzfall für $H_0$ wird der Grenzwinkel zu $\rho_0$ mit:

$\tan \rho_0 = \frac{H_0}{N} = \frac{\mu_0 \cdot N}{N} = \mu_0$.

$\rho_0$ ist also der Haftungswinkel.

Man kann grafisch feststellen, ob sich ein Körper in Ruhe befindet, indem man den Haftungswinkel $\rho_0$ links und rechts von der Normalkraft $N$ abträgt. Befindet sich die Resultierende $NH$ innerhalb diese Winkels, so befindet sich der Körper in Ruhe.

Haftungswinkel
Haftungswinkel

In der obigen Grafik wurde der Haftungswinkel $\rho_0$ links und rechts von der Normalkraft $N$ abgetragen. Solange die Spitze der Resultierenden $NH$ innerhalb der gestrichelten Linien liegt, befindet sich der Körper in Ruhe $H < H_0$, ansonsten in Bewegung $H > H_0$.

Einige Haftungskoeffizienten für trockene Materialien

Material Haftungskoeffizient $\mu_0$
Holz auf Holz 0,5
Stahl auf Stahl 0,15 - 0,5
Stahl auf Teflon 0,04
Stahl auf Eis 0,03
Leder auf Metall 0,4
Autoreifen auf Straße 0,7 - 0,9

Anwendungsbeispiel: Körper in Ruhe

Beispiel

Gegeben sei der nachfolgende rechteckige Körper aus Stahl, welcher sich auf einer schiefen Ebene aus Teflon befindet. Der Neigungswinkel beträgt $\alpha = 20°$ und der Haftungskoeffizient sei $\mu_0 = 0,04$. Der Körper hat das Gewicht $G = 10 N$ mit einer angreifenden Kraft $F$. Innerhalb welcher Grenzen befindet sich $F$, wenn der Körper sich in Ruhe befindet?

Haftreibung Beispiel
Haftreibung Beispiel
Bewegung nach oben

Es wird als erstes davon ausgegangen, dass $F$ sehr groß ist. Da sich der Klotz bei großem $F$ ohne Haftung nach oben bewegen würde, muss die Haftung nach unten zeigen (entgegen der Bewegung) und hält somit den Körper im Ruhezustand. Die Haftung $H$ wird parallel zur schiefen Ebene eingezeichnet. Die Gewichtskraft $G$ wirkt immer vertikal nach unten. Die Normalkraft $N$ ersetzt die schiefe Ebene und wird im 90°-Winkel zur schiefen Ebene eingezeichnet. Das Freikörperbild sieht wie folgt aus:

Haftreibung Freikörperbild
Freikörperbild

In der rechten Grafik ist das Koordinatensystem eingezeichnet mit dem Winkel $\alpha$. $H$ und $F$ befinden sich beide auf der $x$-Achse nur entgegengesetzt mit dem Winkel $\alpha$ zur Hilfslinie (gestrichelte Linie). $N$ zeigt in Richtung der positiven $y$-Achse. Mithilfe der Gleichgewichtsbedingungen können jetzt die fehlenden Größen ermittelt werden. Die Berechnung der Winkel erfolgt hier immer zur positiven $x$-Achse hin:

Pfeil nach links oben ($y$-Achse): $N + G \cdot \sin ((90° - \alpha) + 90° + 90°) = 0$

$N = -10 N \cdot \sin (250) = 9,40 N$.

Pfeil nach rechts oben ($x$-Achse): $F - H + G \cdot \cos (250) = 0$

$H = F + G \cdot \cos (250) = F + 10 N \cdot \cos (250) = F - 3,42 N$.

Ein Körper befindet sich solange in Ruhe wie $H \le H_0 = \mu_0 \cdot N$ gilt:

$F - 3,42 N \le \mu_0 \cdot 9,40 N$                    |$\mu_0 = 0,04$

$F \le 3,80 N$

Die obere Grenze für $F$ ist also $3,80 N$. Wenn $F$ größer als dieser Wert wird, dann bewegt sich der Körper nach oben und die Gleitreibung $R$ tritt anstelle der Haftreibung $H$.

Bewegung nach unten

Es wird jetzt davon ausgegangen, dass $F$ sehr klein ist. Da der Körper bei kleinem $F$ ohne Haftung nach unten rutschen würde, muss die Haftung nach oben zeigen (entgegen der Bewegung) und hält somit den Körper im Ruhezustand. Die Normalkraft ersetzt wieder die schiefe Ebene und das Gewicht $G$ zeigt nach unten:

Haftreibung Freikörperbild
Freikörperbild

Mittels der Gleichgewichtsbedingungen können die fehlenden Größen berechnet werden:

Pfeil nach rechts oben (x-Achse): $H + F + G \cdot \cos (90° - \alpha + 180°) = 0$

$H = - F - G \cdot \cos (250°) = -F + 3,42 N$

Pfeil nach links oben (y-Achse): $N + G \cdot \sin (250°) = 0$

$N = - G \cdot \sin (250°) = 9,40 N$

Ein Körper befindet sich solange in Ruhe wie $H \le H_0 = \mu_0 \cdot N$ gilt:

$-F + 3,42 N \le \mu_0 \cdot 9,40 N$                 |$\mu_0 = 0,04$

$F \ge 3,04 N$

Die untere Grenze für $F$ ist also $3,04 N$. Wenn $F$ kleiner als dieser Wert wird, dann rutscht der Körper nach unten und die Gleitreibung $R$ tritt anstelle der Haftreibung $H$.

Multiple-Choice
Welche der folgenden Aussagen bezüglich Reibung und Haftung sind richtig?
0/0
Lösen

Hinweis:

Bitte kreuzen Sie die richtigen Aussagen an. Es können auch mehrere Aussagen richtig oder alle falsch sein. Nur wenn alle richtigen Aussagen angekreuzt und alle falschen Aussagen nicht angekreuzt wurden, ist die Aufgabe erfolgreich gelöst.

Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Haftreibung ist Teil eines interaktiven Online-Kurses zum Thema Technische Mechanik 1: Statik.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Technische Mechanik 1: StatikTechnische Mechanik 1: Statik
Dieser Inhalt ist Bestandteil des Online-Kurses

Technische Mechanik 1: Statik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Technische Mechanik 1
    • Einleitung zu Kurs: Technische Mechanik 1
  • Grundlagen der Technischen Mechanik
    • Einleitung zu Grundlagen der Technischen Mechanik
    • Der Kraftbegriff
    • Eigenschaften der Kraft
    • Darstellung der Kraft
    • Reaktionskräfte (Zwangskräfte)
    • Das Wechselwirkungsgesetz der technischen Mechanik (Lex Tertia)
    • Dimensionen und Einheiten der technischen Mechanik
  • Einzelkräfte mit gemeinsamen Angriffspunkt
    • Einleitung zu Einzelkräfte mit gemeinsamen Angriffspunkt
    • Zentrales Kräftesystem
    • Kräftepolygon in der Ebene
    • Kommutativgesetz
    • Verschränktes Kräftepolygon
    • Bestimmung der Resultierenden
      • Einleitung zu Bestimmung der Resultierenden
      • Kräfte mit gemeinsamer Wirkungslinie
      • Kräfte mit unterschiedlicher Wirkungslinie
        • Zwei Kräfte mit einem gemeinsamen Angriffspunkt
        • Mehrere Kräfte mit gemeinsamen Angriffspunkt
    • Kräftegleichgewicht in der Ebene
      • Kräftegleichgewicht bei zwei Kräften
      • Kräftegleichgewicht bei mehr als zwei Kräften
    • Kräftegleichgewicht im Raum
  • Einzelkräfte mit verschiedenen Angriffspunkten
    • Einleitung zu Einzelkräfte mit verschiedenen Angriffspunkten
    • Ebenes Kräftesystem
      • Kräfte mit parallelen Wirkungslinien
      • Kräftepaare und Kräftepaarmomente
      • Bestimmung von Momenten
      • Resultierende ebener Kräftegruppen
      • Gleichgewichtsbedingungen ebener Kräftesysteme
    • Räumliches Kräftesystem
      • Räumliche Zusammensetzung von Kräften
  • Schwerpunkte
    • Einzelne parallele Kräfte
    • Kontinuierlich verteilte Kräfte
    • Flächenschwerpunkte
    • Übersicht: Flächen mit Schwerpunktlage und Flächeninhalt
    • Linienschwerpunkte
  • Lagerreaktionen
    • Definition von Lagern
    • Statische Bestimmtheit ebener Tragwerke
    • Lagerreaktionsberechnung ebener Tragwerke
    • Statische Bestimmtheit räumlicher Tragwerke
    • Statische Bestimmheit mehrteiliger Tragwerke
      • Einleitung zu Statische Bestimmheit mehrteiliger Tragwerke
      • Anwendungsbeispiel Dreigelenkbogen
      • Anwendungsbeispiel Gelenkbalken
  • Fachwerke
    • Einleitung zu Fachwerke
    • Statische Bestimmtheit von Fachwerken
    • Aufbau eines Fachwerks
    • Verfahren zur Bestimmung der Stabkräfte
      • Rittersches Schnittverfahren
        • Einleitung zu Rittersches Schnittverfahren
        • Beispiel 1: Ritterschnittverfahren
        • Beispiel 2: Ritterschnittverfahren
      • Knotenpunktverfahren
        • Einleitung zu Knotenpunktverfahren
        • Bestimmung von Nullstäben
        • Beispiel: Knotenpunktverfahren
          • Einleitung zu Beispiel: Knotenpunktverfahren
          • 1. Bestimmung von Nullstäben
          • 2. Bestimmung der Lagerreaktionen
          • 3. Durchführung des Knotenpunktverfahrens
  • Schnittmethode und Schnittgrößen
    • Einleitung zu Schnittmethode und Schnittgrößen
    • Schnittgrößen linienförmiger Tragwerke
      • Schnittgrößen am Balken
        • Schnittgrößen: Einzelkräfte am Balken
        • Schnittgrößen: Streckenlast am Balken
          • Einleitung zu Schnittgrößen: Streckenlast am Balken
          • Streckenlast: Schnittgrößen durch Integration
          • Streckenlast: Schnittgrößen anhand der Gleichgewichtsbedingungen
      • Schnittgrößen am Rahmen
        • Einleitung zu Schnittgrößen am Rahmen
        • Beispiel: Kippender Stuhl
      • Schnittgrößen am Bogen
    • Schnittgrößen an räumlichen Tragwerken
    • Föppl-Klammer
  • Reibung und Haftung
    • Grundlagen der Reibung
    • Haftreibung
    • Gleitreibung
    • Seilreibung
  • 65
  • 22
  • 90
  • 209
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 20.05.2016:
    "Sehr gut"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 17.04.2016:
    " Perfekt!!!"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 10.04.2016:
    "nichts auszusetzen :D "

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 17.03.2016:
    "Sehr gut verständlich. :D"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 12.03.2016:
    "Top!! Brauche den Kurs hier zur Prüfungsvorbereitung eigentlich zur Auffrischung da alles bekannt. Lösungsansätze und vorgehen sehr simple erspart mir viel Zeit."

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 23.02.2016:
    "Zum jetzigen Zeitpunkt ist alles sehr gut verständlich."

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 09.02.2016:
    "sehr ausführlich und mit viel Liebe "

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 02.02.2016:
    "Sehr hilfreich. Ich besuche gerade die bauhandwerkerschule und habe bis jetzt immer Schwierigkeiten im Fach Statik gehappt. Habe jetzt in 2 Stunden mehr gelernt (und alles verstanden) als in 3 Monaten Unterricht. Ich werde diese Online Kurse auf jeden fall weiterempfehlen! "

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 27.01.2016:
    "Videos sind sehr ausführlich erklärt, Schritte sehr gut nachvollziehbar"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 14.01.2016:
    "guter Kurs !"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 09.01.2016:
    "läuft gut :D"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 06.01.2016:
    "Diesen Kurs finde ich bis jetzt ganz gut! Alles ist gut verdeutlicht! :)"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 13.12.2015:
    "Sehr gut. :)"

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 09.12.2015:
    "Ich fand es sehr gut, da es gute Beispiele gab und in den Videos ist alles sehr gut erklärt. Es ist alles verständlich und gut nachvollziehbar."

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 08.12.2015:
    "Gut und übersichtlich erklärt "

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 02.12.2015:
    "Sehr guter Kurs, die Videos sind Top und auch die Aufgaben zwischendurch fördern das "Behalten" des Wissens und beugen einem "Vergessen" vor. Echt spitzenmäßiger Online Lernkurs."

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 14.05.2015:
    "sehr gut, "

  • Gute Bewertung für Technische Mechanik 1: Statik

    Ein Kursnutzer am 26.10.2014:
    "Echt Klasse! Es gibt einem ein gutes Gefühl und durch das erreichen von kleine Erfolgserlebnis, bin ich motiviert! "

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen