ingenieurkurse
online lernen

Besser lernen mit Online-Kursen

NEU! Jetzt online lernen:
Technische Mechanik 2: Elastostatik
Den Kurs kaufen für:
einmalig 39,00 €
Zur Kasse

Wärmedehnungen

WebinarTerminankündigung aus unserem Online-Kurs Thermodynamik:
 Am 13.12.2016 (ab 16:00 Uhr) findet unser nächstes Webinar statt.
Gratis-Webinar (Thermodynamik) Innere Energie, Wärme, Arbeit
- Innerhalb dieses 60-minütigen Webinares wird der 1. Hauptsatz der Thermodynamik für geschlossene Systeme behandelt und auf die innere Energie, Wärme und Arbeit eingegangen.
[weitere Informationen] [Terminübersicht]

Ähnlich wie bei einer Belastung durch eine äußere Zugkraft, dehnt sich ein Körper unter Wärmeeinfluss aus. Alle Stoffe ändern ihr Volumen in Abhängigkeit von der Temperatur. Üblicherweise dehnt sich ein Körper beim Erwärmen in alle Richtungen gleich aus (es gibt Ausnahmen). Mittels Experimenten hat man herausgefunden, dass bei gleichförmiger Erwärmung von Stäben, die Thermische Dehnung $\epsilon_{th}$ proportional zur Temperaturänderung $\triangle T$ steht:

Methode

$\epsilon_{th} = \alpha_{th}\; \triangle T $                               Thermische Dehnung

mit

$\epsilon_{th} \rightarrow $ Thermische Dehnung

$\alpha_{th} \rightarrow $ Thermischer Ausdehnungskoeffizient [in $\frac{1}{K}$]

$\triangle T \rightarrow $ Temperaturdifferenz in Bezug auf die Ausgangstemperatur $ T_0 $

Der thermische Ausdehnungskoeffizient $\alpha_{th}$ ist eine Werkstoffkonstante und wird in der Einheit $1/K $ angegeben. In der nachfolgenden Tabelle finden sich einige Wärmedehnungskoeffizienten für verschiedene Werkstoffe:

Materialbezeichnung E-Modul in kN/mm² $\alpha_{th}$ [1/K]
Ferritischer Stahl 210 12 . 10-6
Kupfer 130 16 . 10-6
Blei 19 26 . 10-6
Glas 70 0,1 . 10-6 -9,0 . 10-6
Beton 22-45

1 . 10-6


Thermische Dehnungen sind reversibel, d.h. nach Rückkehr in die Ausgangstemperatur verschwinden die thermischen Verformungen wieder. Ist allerdings der betrachtete Werkstoff beim Erwärmen behindert, z.B. durch Auflager, so können sich die thermischen Verformungen nicht ungehindert ausbreiten. Dies führt dazu, dass thermische Spannungen hervorgerufen werden. Diese Wärmespannungen bewirken mechanische Verformungen, d.h. elastische oder plastische Dehnungen. Im Weiteren wird davon ausgegangen, dass es sich um rein-elastische (keine plastischen) Verformungen $\epsilon$ handelt für die das Hookesche Gesetz gilt. Das bedeutet also, dass zusätzlich zu den Wärmedehnungen $\epsilon_{th}$ noch die bereits bekannten elastischen Dehnungen $\epsilon = \frac{\sigma}{E}$ auftreten, sobald der Werkstoff behindert wird.

Thermische Dehnungsbehinderung

Liegt nun eine Dehnungsbehinderung des Werkstoffes bei der Erwärmung vor, so muss neben der Wärmedehnung die elastische Dehnung berücksichtigt werden. Man kann dann die Gesamtdehnung durch Addition der beiden Anteile ermitteln:

$\epsilon_{ges} =  \epsilon + \epsilon_{th}$   


Es ergibt sich mit

$\epsilon_{th} =  \alpha_{th} \triangle T$

$\epsilon =  \frac{\sigma}{E}$

die folgende Gesamtdehnung:

Methode

$\epsilon_{ges} = \frac{\sigma}{E} + \alpha_{th} \triangle T$   Gesamtdehnung

Durch diese Gleichung ist es zudem möglich, die Spannung $\sigma$ durch Umstellen und Auflösen zu ermitteln, wenn die anderen Faktoren gegeben sind. Es ergibt sich:

Methode

$\sigma = E(\epsilon - \alpha_{th} \triangle T) $     Spannung bei Wärmedehnungen

Aus der Gleichung wird deutlich, dass sich die Spannung um den thermischen Anteil vermindert.

Merke

Unbehinderte Dehnungen bestehen ausschließlich aus einem thermischen Anteil $\epsilon_{ges} = \epsilon_{th} = \alpha_{th} \triangle T$. Eine Spannung tritt infolgedessen nicht mehr auf.  Erst wenn der Werkstoff einer Behinderung unterliegt, muss die elastische Dehnung zusätzlich berücksichtigt werden $\epsilon_{ges} = \alpha_{th} \triangle T + \frac{\sigma}{E}$.

Anwendungsbeispiel: Wärmedehnungen

Wärmedehnungen am Zugstab Beispiel

Beispiel

Gegeben sei der oben abgebildete Stab aus ferritischem Stahl, welcher durch die Kraft $F$ und die Temperaturänderung $\triangle T(x)$ belastet wird.

Gegeben: $L = 2m$, $A = 10 cm^2$, $E = 210.000 \frac{N}{mm^2}$, $\alpha_{th} = 12 \cdot 10^{-6} \frac{1}{K}$, $F = 2.000 N$, $\triangle T_0 = 25 K$.

Wie groß ist die Längenänderung $\triangle l$ des Stabes?

Die Längenänderung $\triangle l$ des Stabes bestimmt sich aus der Gleichung:

$\epsilon = \frac{\triangle l}{l_0}$  

Umstellen nach $\triangle l$ ((Hier: $L = l_0$):

$\triangle l = \epsilon \cdot L$ 

Um die Längenänderung zu bestimmen, muss die Dehnung zunächst berechnet werden. Diese ergibt sich zu:

$\epsilon_{ges} = \frac{\sigma}{E} + \alpha_{th} \triangle T$ 

Die Temperatur $\triangle T$ ist in diesem Fall nicht konstant, sondern steigt mit zunehmendem $x$ linear an, bis sie ihr Maximum bei $x = L$ erreicht hat. Um den Temperaturverlauf zu bestimmen, muss die Gerade (blau) bestimmt werden:

Wärmedehnungen Beispiel

Die Steigung $m$ ist: $L$ nach rechts und $\triangle T_0$ nach oben:

$m = \frac{\triangle T_0}{L}$

Die allgemeine Geradengleichung ergibt sich zu:

$f(x) = mx + b$    wobei $m$ die Steigung und $b$ den Beginn auf der Ordinate darstellt.

In diesem Fall:

$\triangle T(x) = \frac{T_0}{L} \cdot x + 0$

Methode

$\triangle T(x) = \frac{T_0}{L} \cdot x$

Da nun der Temperaturverlauf gegeben ist, kann dieser in die Gleichung für die Gesamtdehnung eingesetzt werden:

$\epsilon_{ges} = \frac{\sigma}{E} + \alpha_{th} \cdot \frac{T_0}{L} \cdot x$

Als nächstes wird die Normalspannung $\sigma = \frac{N}{A}$ bestimmt, indem der Stab geschnitten wird:

Wärmedehnungen Schnittgrößen Normalkraft

Die Normalkraft $N$ kann entweder anhand des rechten oder des linken Stabelements berechnet werden. Da die Auflagergrößen für die Einspannung nicht bekannt sind, wird die rechte Seite zur Berechnung verwendet:

$\rightarrow: -N + F = 0 \; N = F$

Die Spannung bestimmt sich also zu:

$\sigma = \frac{N}{A} = \frac{F}{A} = \frac{2.000 N}{0,001 m^2} = 2.000.000 N/m^2$

Eingesetzt in die Gleichung für die Gesamtdehnung:

$\epsilon_{ges} = \frac{2.000.000 N/m^2}{E} + \alpha_{th} \cdot \frac{T_0}{L} \cdot x$

Alle übrigen bekannten Werte einsetzen (Achtung: Umrechnung von $N/mm^2$ in $N/m^2$):

$\epsilon_{ges} = \frac{2.000.000 N/m^2}{\frac{210.000 N/m^2}{1,0 \cdot 10^{-6}}} + 12 \cdot 10^{-6} \frac{1}{K} \cdot \frac{25 K}{2 m} \cdot x$

$\epsilon_{ges} = 9,524 \cdot 10^{-6} + 0,00015 \frac{1}{m} \cdot x$.

Es ergibt sich also eine Dehnung, welche abhängig von $x$ ist. Hier können nun die Formeln aus dem Abschnitt Dehnung (Stabelement) herangezogen werden:

Methode

$\triangle l = u(l) - u(0) = \int_0^l \epsilon(x) \; dx$

Einsetzen der Dehnung in die Formel:

$\triangle l = \int_0^l (9,524 \cdot 10^{-6} + 0,00015 \frac{1}{m} \cdot x) \; dx$

Integration:

$\triangle l = [9,524 \cdot 10^{-6} x + 0,00015 \frac{1}{m} \frac{1}{2} x^2]_0^L$

$\triangle l = 9,524 \cdot 10^{-6} \cdot L + 0,00015 \frac{1}{m} \frac{1}{2} L^2$

Einsetzen von $L = 2m$:

$\triangle l = 9,524 \cdot 10^{-6} \cdot 2m + 0,00015 \frac{1}{m} \frac{1}{2} (2m)^2$

$\triangle l = 0,000319 m$

Die Verlängerung des Stabes beträgt 0,000319 m.

Lückentext
Bitte die Lücken im Text sinnvoll ausfüllen.
Die Formel $\epsilon = \epsilon_{th} + \epsilon_{el}$ beschreibt die eines Körpers.
0/0
Lösen

Hinweis:

Bitte füllen Sie alle Lücken im Text aus. Möglicherweise sind mehrere Lösungen für eine Lücke möglich. In diesem Fall tragen Sie bitte nur eine Lösung ein.

Bild von Autor Jessica Scholz

Autor: Jessica Scholz

Dieses Dokument Wärmedehnungen ist Teil eines interaktiven Online-Kurses zum Thema Technische Mechanik 2: Elastostatik.

Jessica Scholz verfügt über langjährige Erfahrung auf diesem Themengebiet.
Vorstellung des Online-Kurses Technische Mechanik 2: ElastostatikTechnische Mechanik 2: Elastostatik
Dieser Inhalt ist Bestandteil des Online-Kurses

Technische Mechanik 2: Elastostatik

Ingenieurkurse (ingenieurkurse.de)
Diese Themen werden im Kurs behandelt:

[Bitte auf Kapitelüberschriften klicken, um Unterthemen anzuzeigen]

  • Kurs: Elastostatik
    • Einleitung zu Kurs: Elastostatik
  • Grundlagen
    • Grundlegende Annahmen der Elastostatik
    • Statisches Gleichgewicht
    • Beanspruchungsarten
  • Stabbeanspruchungen
    • Allgemeine Definition der Spannung
    • Spannungen im Stab
      • Einleitung zu Spannungen im Stab
      • Prinzip von St. Venant
      • Spannung im Stab (senkrechter Schnitt)
      • Spannungen im Stab (Schnitt mit Winkel)
      • Beispiel zu Spannungen im Stab: Konischer Stab
      • Beispiel zu Spannungen im Stab: Hängender Zugstab
    • Dehnung im Stab
      • Dehnung im Stab (konstante Dehnung)
      • Dehnung (Stabelement)
    • Materialgesetz / Zugversuch
      • Einleitung zu Materialgesetz / Zugversuch
      • Spannungs-Dehnungs-Diagramm
      • Hookesches Gesetz
    • Wärmedehnungen
    • Verformungen quer zur Stabachse
      • Querdehnungen
      • Volumendehnungen
      • Schubverformungen
    • Differentialgleichung eines Stabes
    • Zusammenfassung der Grundgleichungen für den Stab
    • Statisch bestimmte Stabwerke
      • Statisch bestimmte Stabwerke (Einzelstab)
        • Einleitung zu Statisch bestimmte Stabwerke (Einzelstab)
        • Beispiel: Belastung durch Kraft am Stabende (ohne Linienkraft)
        • Beispiel: Belastung durch Kraft am Stabende (mit Linienkraft)
      • Statisch bestimmte Stabwerke (Stabzweischlag)
    • Statisch unbestimmte Stabwerke
      • Statisch unbestimmte Stabwerke (Einzelstab)
      • Statisch unbestimmte Stabwerke (Dreistab)
  • Mehrachsige Spannungszustände
    • Allgemeine Annahmen
    • Ebener Spannungszustand
      • Einleitung zu Ebener Spannungszustand
      • Ebener Spannungszustand: Koordinatentransformation
      • Beispiel 1: Koordinatentransformation
      • Ebener Spannungszustand: Zugeordnete Schubspannungen
      • Beispiel 2: Koordinatentransformation
      • Sonderfälle des ebenen Spannungszustandes
    • Hauptspannungen
      • Einleitung zu Hauptspannungen
      • Extremwerte der Normalspannungen (Hauptnormalspannungen)
      • Extremwerte der Schubspannungen (Hauptschubspannungen)
      • Formelsammlung Koordinatentransformation und Schnittwinkeländerung
      • Beispiele: Hauptspannungen
        • Beispiel 1: Hauptspannungen
        • Beispiel 2: Hauptspannungen
    • Mohrscher Spannungskreis
      • Einleitung zu Mohrscher Spannungskreis
      • Beispiel: Mohrscher Spannungskreis
    • Ebener Verzerrungszustand
      • Zusammenhang von Verschiebungen und Verzerrungen
        • Einleitung zu Zusammenhang von Verschiebungen und Verzerrungen
        • Verträglichkeitsbedingungen
        • Verzerrungstensor
      • Transformation von Verzerrungskomponenten
      • Hauptdehnungen
    • Räumlicher Verzerrungszustand
    • Hooksche Gesetz für mehrachsige Spannungszustände
      • Hookesches Gesetz im ebenen Spannungszustand
        • Einleitung zu Hookesches Gesetz im ebenen Spannungszustand
        • Hookesches Gesetz: Hauptdehnungen und Hauptspannungen
      • Hookesches Gesetz im ebenen Verzerrungszustand
      • Hookesches Gesetz für den räumlichen Spannungszustand
        • Einleitung zu Hookesches Gesetz für den räumlichen Spannungszustand
        • Hookesches Gesetz mit Wärmedehnungen
      • Beispiele: Hookesches Gesetz für mehrachsige Spannungszustände
  • Balkenbiegung
    • Einleitung zu Balkenbiegung
    • Arten der Biegung
    • Flächenträgheitsmomente
      • Einleitung zu Flächenträgheitsmomente
      • Flächenträgheitsmomente: Definition
      • Deviationsmomente unterschiedlicher Flächen
      • Übersicht: Flächenträgheitsmomente für ausgewählte Querschnitte
      • Beispiel zu Flächenträgheitsmomenten: Rechteck
      • Beispiel: Flächenträgheitsmomente Dreieck
      • Flächenträgheitsmomente: Koordinatentransformation
      • Hauptträgheitsmomente / Hauptachsen
      • Satz von Steiner (Parallelverschiebung der Achsen)
      • Satz von Steiner für zusammengesetzte Flächen
    • Gerade bzw. einachsige Biegung
      • Einleitung zu Gerade bzw. einachsige Biegung
      • Reine Biegung
        • Einleitung zu Reine Biegung
        • Normalspannung bei reiner Biegung
        • Maximale Normalspannung bei reiner Biegung
        • Widerstandsmoment bei reiner Biegung
      • Querkraftbiegung
        • Einleitung zu Querkraftbiegung
        • Beispiel: Querkraftbiegung bei einachsiger Biegung
      • Beispiele: Normalspannungen bei einachsiger Balkenbiegung
        • Beispiel: Spannungsmaximum bei reiner Biegung
        • Beispiel: Widerstandsmoment, zulässige Spannung
      • Balkenverformung bei einachsiger Biegung
        • Einleitung zu Balkenverformung bei einachsiger Biegung
        • Differentialgleichung der elastischen Biegelinie
        • Lösung der Differentialgleichung (elastische Biegelinie)
        • Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Einleitung zu Rand- und Übergangsbedingungen für verschiedene Lagerungsfälle
          • Lösung von Einbereichsaufgaben (Biegelinie)
          • Biegelinie mit Streckenlast
          • Lösung von Mehrbereichsaufgaben (Biegelinie)
        • Superpositionsprinzip
        • Statisch unbestimmt gelagerte Balken
      • Anhang: Biegelinie für unterschiedliche Balkenbelastungen
      • Übersicht Formeln: Einachsige Biegung
    • Schiefe bzw. zweiachsige Biegung
    • Gerade und schiefe Biegung mit Zug
  • Torsion
    • Torsion von Wellen
      • Einleitung zu Torsion von Wellen
      • mit Kreisquerschnitt
        • Einleitung zu mit Kreisquerschnitt
        • Beispiel 1: Torsion beim Kreisquerschnitt
      • mit Kreisringquerschnitt
    • Torsion von dünnwandigen, geschlossenen Profile
    • Torsion von dünnwandigen, offenen Profilen
  • Schub
    • Balkenverformung infolge von Schub
    • Schub bei dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen Profilen
    • Schubspannungsverteilung in dünnwandigen offenen Profilen
    • Schubmittelpunkt bei dünnwandigen offenen Profilen
  • Festigkeitshypothesen
    • Einleitung zu Festigkeitshypothesen
    • Hauptnormalspannungshypothese
    • Hauptschubspannungshypothese
    • Gestaltänderungsenergiehypothese
  • Stabilität und Knickung
    • Stabilitätsfälle und Gleichgewichtslagen
    • Eulersche Fälle der Stabknickung
      • Einleitung zu Eulersche Fälle der Stabknickung
      • Kritische Knickkraft
      • Kritische Knickspannung
  • 108
  • 17
  • 132
  • 214
einmalig 39,00
umsatzsteuerbefreit gem. § 4 Nr. 21 a bb) UStG
Online-Kurs Top AngebotTrusted Shop

Unsere Nutzer sagen:

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 14.04.2016:
    "Ich studiere Maschinenbau als Fernstudium und leider sind einige Studienheft lückenhaft und schwer verständlich geschrieben. Dieser Kurs ist das Beste was ich mir vorstellen kann!!! Ich bin so froh, dass ich diesen Kurs zufällig gefunden habe."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 26.01.2016:
    "Sehr gut, dass man Aufgaben erst selber rechnen kann und danach die Lösung erläutert wird."

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 24.01.2016:
    "Tolles Programm! Super erklärt!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 07.10.2015:
    "Top"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 01.06.2015:
    "Ich schreibe zwar erst meinen Midterm in Mechanik 2 und war mir beim lernen immer unsicher wie genau ich ran gehen soll. Alte Midterms rechnen oder viel wissen aneignen? Wo kriege ich, dass wissen gut erklärt her? Bei eurem Kurs muss man sich keine Gedanken mehr machen alles ist sehr übersichtlich und gut aufbereitet. Mir macht der Kurs spaß. Danke für eure Arbeit!"

  • Gute Bewertung für Technische Mechanik 2: Elastostatik

    Ein Kursnutzer am 11.05.2015:
    "Super!!"

NEU! Sichere dir jetzt die perfekte Prüfungsvorbereitung und spare 10% bei deiner Kursbuchung!

10% Coupon: lernen10

Zu den Online-Kursen